Расчет автотрансформатора своими руками

Схемы и пошаговая инструкция, как сделать автотрансформатор своими руками

Кроме обычных трансформаторов, в которых несколько обмоток, есть автотрансформаторы, в которых всего одна катушка. При необходимости можно произвести сборку автотрансформатора своими руками.

  1. Принцип действия
  2. Основные плюсы и минусы
  3. Мощность автотрансформатора
  4. Что такое ЛАТР
  5. Область применения
  6. Металлургическое производство
  7. Коммунальное хозяйство
  8. Химическая и нефтяная промышленность
  9. Производство техники
  10. Учебные заведения
  11. Изготовление самодельного ЛАТРа
  12. Подготовка материала
  13. Расчет провода
  14. Схема
  15. Намотка катушки
  16. Процесс сборки
  17. Проверка
  18. Как сделать трансформатор из автотрансформатора
  19. Электронный автотрансформатор
  20. Тиристорный регулятор
  21. Транзисторное управление
  22. ШИМ-регулятор

Принцип действия

Основной принцип действия автотрансформатора аналогичен обычному аппарату:

  • ток, протекающий по первичной обмотке, создает магнитное поле и магнитный поток в магнитопроводе;
  • величина этого поля зависит от силы тока и от числа витков;
  • изменения магнитного потока наводят ЭДС во вторичной обмотке;
  • величина наведенной ЭДС зависит от числа витков во вторичной обмотке.

Особенность автотрансформатора в том, что часть витков первичной обмотки является также вторичной. В связи с тем, что ЭДС в первичной и вторичной обмотках направлены встречно, ток в общей части катушки I¹² равен разнице I¹ и I². При равенстве входного и выходного напряжения или Ктр=1 I¹² определяется индуктивным сопротивлением катушки.

Основные плюсы и минусы

В связи с особенностями конструкции автотрансформатор обладает преимуществами и недостатками по сравнению с обычными устройствами.

Достоинства автотрансформатора, проявляющиеся при Ктр0,5-2:

  • меньший вес и габариты;
  • более высокий КПД, связанный с пониженными потерями в обмотках и магнитопроводе.

Кроме достоинств, эти устройства имеют недостатки:

  • Повышенный ток КЗ. Это связано с тем, что ток нагрузки ограничен не насыщением магнитопровода, а сопротивлением нескольких витков вторичной обмотки.
  • Электрическая связь между первичной и вторичной обмотками. Это делает невозможным применение этих аппаратов в качестве разделительных и для питания низковольтных устройств в опасных условиях, требующих низкого напряжения согласно ПУЭ.

Мощность автотрансформатора

Мощность любого электроаппарата равна произведению тока на напряжение Р=I*A. В обычном трансформаторе она равна мощности нагрузки с учетом КПД.

Мощность автотрансформатора рассчитывается немного иначе. В повышающем напряжение аппарате она складывается из мощности первичной обмотки части Р¹²=I¹²*U¹² и мощности повышающей обмотки Р²=I²*U⅔. В связи с тем, что ток, протекающий через первичную катушку меньше, чем ток нагрузки, то мощность автотрансформатора меньше мощности нагрузки. Фактически, мощность аппарата определяется разностью первичного и вторичного напряжений и током вторичной обмотки P=(U¹-U²)*I².

Особенно это заметно при небольших (10-20%) отклонениях выходного напряжения. Аналогичным образом рассчитывается понижающий автотрансформатор.

Информация! Это позволяет уменьшить сечение магнитопровода и диаметр провода обмотки. В связи с этим автотрансформатор легче и дешевле обычного устройства.

Что такое ЛАТР

Кроме силовых аппаратов, заменяющих обычные трансформаторы, в школах, институтах и лабораториях используются ЛАТРы – Лабораторные АвтоТРанформаторы. Эти устройства используются для плавного изменения напряжения на выходе аппарата. Самые распространенные конструкции представляют из себя катушку, намотанную на тороидальном магнитопроводе. С одной из сторон провод очищен от лака и по нему при помощи поворотного механизма двигается графитный ролик.

Питающее напряжение подаётся на концы катушки, а вторичное снимается с одного из концов и графитного ролика. Поэтому ЛАТР не может поднимать напряжение выше сетевого, в некоторых модификациях выше 250В.

Кроме катушечных, есть электронные ЛАТРы. Фактически, это не автотрансформатор, а регулятор напряжения. Есть разные виды таких устройств:

  • Тиристорный регулятор. В этих аппаратах в качестве силового элемента установлены тиристор и диодный мост или симистор. Недостаток в отсутствии синусоидальной формы выходного напряжения. Самый известный прибор такого типа – диммер ламп освещения.
  • Транзисторный регулятор. Дороже тиристорного, требует установки транзисторов на радиаторы. Обеспечивает синусоидальную форму выходного напряжения.
  • ШИМ-контроллер.

Совет! Для того, чтобы получить напряжение выше сетевого, ЛАТР подключается ко вторичной обмотке повышающего трансформатора.

Область применения

Особенности автотрансформатора позволяют применять его в быту и разных областях промышленности.

Металлургическое производство

Регулируемые автотрансформаторы в металлургии применяются для проверки и настройки защитной аппаратуры прокатных станов и трансформаторных подстанций.

Коммунальное хозяйство

До появления автоматических стабилизаторов эти аппараты применялись для обеспечения нормальной работы телевизоров и другой аппаратуры. Они представляли из себя обмотку с большим числом отводов и переключателем. Он переключал вывода катушки, а выходное напряжение контролировалось при помощи вольтметра.

В настоящее время автотрансформаторы используются в релейных стабилизаторах напряжения.

Справка! В трехфазных стабилизаторах установлены три однофазных автотрансформатора, и регулировка производится в каждой фазе по-отдельности.

Химическая и нефтяная промышленность

В химической и нефтяной промышленности эти аппараты применяются для стабилизации и регулировки химических реакций.

Производство техники

В машиностроении такие аппараты используются для пуска электродвигателей станков и управления скоростью вращения дополнительных приводов.

Учебные заведения

В школах, техникумах и институтах ЛАТРы применяются при выполнении лабораторных работ и демонстрации законов электротехники, и опытах по электролизу.

Изготовление самодельного ЛАТРа

В продаже есть достаточно готовых устройств, но при необходимости его можно сделать самостоятельно. За основу лучше взять трансформатор на О- или Ш-образном магнитопроводе. Изготовление ЛАТРа на тороидальном железе сводится к его перемотке и требует очень высокой аккуратности при наматывании катушки.

Подготовка материала

Для изготовления регулируемого автотрансформатора необходимы:

  • Магнитопровод. Его сечение определяет мощность автотрансформатора.
  • Обмоточный провод. Его сечение зависит от мощности и потребляемого тока устройства.
  • Термоустойчивый лак. Необходим для пропитки катушки после намотки проводов. Допускается замена масляной краской.
  • Тряпичная изолента или киперная лента и корпус с закрепленными разъемами для подключения нагрузки и питания. Желательно разместить в корпусе цифровой или аналоговый вольтметр
  • Многопозиционный переключатель. Его допустимый ток должен соответствовать току аппарата. При необходимости допускается производить переключение выводов автотрансформатора при помощи пускателей.

Расчет провода

Перед началом намотки катушки необходимо определить сечение провода и необходимое количество витков/вольт (n/v). Этот расчёт производится по поперечному сечению магнитопровода при помощи онлайн-калькуляторов или по специальным таблицам.

Если для изготовления устройства используется исправный трансформатор, то эти параметры определяются по имеющимся обмоткам:

  • подключить трансформатор к сети 220В;
  • вольтметром измерить выходное напряжение V;
  • отключить аппарат;
  • разобрать магнитопровод;
  • размотать вторичную обмотку, считая количество витков N;
  • по формуле n/v=N/V вычислить количество витков/вольт – основной параметр для расчета катушки;
  • измерить сечение провода первичной обмотки.

Совет! Если первичная обмотка не была пропитана лаком и разматывается без нарушения изоляции, то допускается использовать её для намотки катушки автотрансформатора.

Схема

Перед началом работ составляется схема обмотки с указанием количества витков и напряжением на каждом из выводов. В отличие от обычного трансформатора автотрансформатор имеет только одну обмотку, которая изображается с одной из сторон черты, символизирующей магнитопровод.

Для расчетов витков необходимо определить число выводов. Оно зависит от количества положений многопозиционного переключателя. Один из отводов может совпадать с сетевым выводом:

  • определить и указать на схеме напряжение V каждого из положений переключателя;
  • рассчитать необходимое число витков между отводами по формуле N=(n/v)*(V²-V³), где V¹, V², V³ и т.д. – напряжение на последующих выводах;
  • указать на схеме количество витком между каждыми из отводов.

Совет! При необходимости сделать повышающий автотрансформатор к первичной обмотке добавляется необходимое количество витков. Для этого допускается использовать провод, снятый со вторичной обмотки.

Намотка катушки

После выполнения всех расчётов производится намотка катушки. Она выполняется на готовом или специально изготовленном каркасе вручную или при помощи намоточного станка:

  • наматывается необходимое число витков в секции;
  • выполняется ответвление – из обмоточного провода, не обрывая его, делается петля длиной 5-20 см и скручивается в жгут;
  • после изготовления отвода продолжается намотка катушки;
  • операции 1-3 повторяются до завершения намотки;
  • готовая обмотка закрепляется киперной лентой и покрывается лаком или краской.

Процесс сборки

После завершения намотки и высыхания лака производится сборка автотрансформатора:

  • собирается магнитопровод;
  • собранный аппарат устанавливается в корпус;
  • подключаются многопозиционный переключатель и вольтметр;
  • собранный автотрансформатор подключается к клеммам.

Проверка

После сборки работоспособность устройства необходимо проверить:

  • первичная обмотка аппарата подключается к сети;
  • измеряются напряжения при каждом из положений переключателя и данные сравниваются с расчетными;
  • через 20 минут трансформатор отключается и проверяется на нагрев – при его отсутствии производятся повторные испытания под нагрузкой.

Как сделать трансформатор из автотрансформатора

Кроме изготовления ЛАТРа из обычного трансформатора возможно обратная операция – изготовление трансформатора из ЛАТРа. Такие устройства обладают более высоким КПД из-за лучших свойств тороидального сердечника по сравнению с Ш-образным магнитопроводом.

Для такой переделки достаточно намотать вторичную обмотку:

  • посчитать количество витков между выводами 220В;
  • определить число витков/вольт

Электронный автотрансформатор

Более современным способом регулировки является использование электронных устройств. Любое из них можно изготовить своими руками.

Тиристорный регулятор

Простейшая схема такого приспособления представляет собой переменный резистор, включенный между анодом и управляющим электродом тиристора. Это позволяет получать пульсирующее постоянное напряжение и управлять им в диапазоне 0-110В.

Для регулировки переменного напряжения 0-220В применяется встречно-параллельная схема соединения, а резистор включается между управляющими электродами.

Вместо двух тиристоров целесообразно применение симистора, а в качестве схемы управления использовать диммер для ламп накаливания.

Транзисторное управление

Самая качественная регулировка получается при использовании транзисторного регулятора. Он обеспечивает плавное изменение и правильную форму выходного напряжения.

Недостаток этой схемы в нагреве выходных транзисторов. Для его уменьшения и повышения КПД целесообразно подключить регулятор к выходным клеммам автотрансформатора – грубая регулировка осуществляется переключением обмоток, а плавная при помощи транзисторов.

Читайте также  Индукционная паяльная станция своими руками

ШИМ-регулятор

Самым современным способом является применение ШИМ-контроллера (широтно-импульсная модуляция). В качестве силовых элементов полевые или биполярные транзисторы с изолированным затвором (IGBT).

Расчет автотрансформатора своими руками

Всем Доброго времени суток !

Собственно такая делема: Необходимо рассчитать и намотать Автотрансформатор с комутацией отводов со схемой по «ВЫХОДУ».
(схему автотрансформатора прилагаю)
а именно:
Необходимо до намотки рассчитать кол-во витков в каждой обмотке. Так как комутация будет по «ВЫХОДУ» то при расчете отводов автотрансформатора кол-во витков (от отвода к отводу) на вольт будет менятся-так как будет менятся коэф.передачи и в следствии с этим коэф.трансформации и полное кол-во витков автотрансформатора будет в 1,7 раза больше,чем при расчете обычного автотрансформатора.
Кол-во витков на вольт (на первом этапе известно и = 1,0 витка/v)
Ступени у меня такие 1) 244-259v; 2) 225-244v; 3) 206-225v; 4) 187-206v; 5) 168-187v; 6) 150-168v;.
На всякий случай привожу средние значения ступеней: 1) 252v; 2) 235v; 3) 216v; 4) 197v; 5) 178v; 6) 159v.
Мотать буду медным проводом (шиной) сечением: обмотку 0. 1, 1. 2 (4,3 кв.мм). ; обмотку 2. 3, 3. 4, 4. 5, 5. 6 (16 кв. мм)
Расчет сечений обмоток ( 2. 3, 3. 4, 4. 5, 5. 6 ) выполнялся из расчета самого тяжелого режима для автотрансформатора при напряжении 150v и токе в 40А и мощности соответственно 6000Вт.Плотность тока в обмотках выбрана в 2,5А на 1кв.мм.
Логика работы переключающих симисторных ключей (QF2-QF7):При изменении напряжения в сети — управляющий контроллер подает управляющий импульс на симистор и он открываясь подключает соответствующую обмотку автотрансформатора,например если в сети напряжение в пределах 187-206v -то срабатывает ключ QF4 и подключает соответствующую обмотку — (соответственно эта часть обмотки должна быть расчитана на этот диапазон напряжений т.е 187-206v).
Сложность состоит в том,что (как я выше писал) — Так как комутация будет по «ВЫХОДУ» то при расчете отводов автотрансформатора кол-во витков (от отвода к отводу) на вольт будет менятся-так как будет менятся коэф.передачи и в следствии с этим коэф.трансформации и полное кол-во витков автотрансформатора будет в 1,7 раза больше,чем при расчете обычного автотрансформатора.С этим я и не могу разобраться-так как неполучается расчитать правильно (нет точной методики-хотяб на примере).

Если кто подскажет как -то я буду благодарен !
Заранее Спасибо.

Вложения:
Схема.JPG [63.71 KiB]
Скачиваний: 2191

_________________
Куплю Микросхемы: К120ИЕ3 (К1ИЕ203)

_________________
Всё можно наладить,если вертеть в руках достаточно долго!

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

_________________
Куплю Микросхемы: К120ИЕ3 (К1ИЕ203)

Лучше 40 раз по разу,чем один раз 40 раз !

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

_________________
Всё можно наладить,если вертеть в руках достаточно долго!

Последний раз редактировалось ublhjnt Пн дек 12, 2011 12:40:30, всего редактировалось 1 раз.

Интеллектуальные силовые ключи PFOFET производства Infineon могут измерять ток нагрузки с разной точностью, зависящей как от абсолютной величины потребляемого тока, так и от технологии производства конечной продукции, в частности – от наличия или отсутствия этапа калибровки. В статье подробно разбирается расчет коэффициента передачи тока на примере ключа BTS7004-1EPP.

_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение

Вебинар пройдет 16/09/2021 и будет посвящен особенностям работы высокопроизводительных микроконтроллеров из линеек STM32H7. На вебинаре разберем ключевые особенности линеек STM32H72/3 и проведем практическую работу с оценкой производительности с использованием ускорителей и кэш-буфера при чтении инструкций из внутренней и из зашифрованной внешней памяти. Для отображения результатов будет использоваться программная среда STM32CubeMonitor. будет использоваться программная среда STM32CubeMonitor.

_________________
Мудрость приходит вместе с импотенцией.

Я в курсе что не выгодна -но буду делать именно так, потому, что

Данный вариант подключение позволяет снять с симистора ВТА40-600 5,5 кВт полезной мощности, что почти в 2 раза больше в варианте коммутации «по входу».

Недостатком является необходимость применения симисторов, рассчитанных на рабочее напряжение не менее 800 Вольт (в трех верхник по схеме отводах автотрансформатора), и в 1,7 раза увеличенное число витков обмотки автотрансформатора.

_________________
Куплю Микросхемы: К120ИЕ3 (К1ИЕ203)

Лучше 40 раз по разу,чем один раз 40 раз !

И ещё одно-со схемой комутации по «ВЫХОДУ» -стабилизатор будет работать надежнее ! Так как основной ток будет бежать через автотрансформатор а ключи будут коммутировать лишь отводы.

_________________
Куплю Микросхемы: К120ИЕ3 (К1ИЕ203)

Лучше 40 раз по разу,чем один раз 40 раз !

_________________
Мудрость приходит вместе с импотенцией.

Я не ищу выгоды-так как делаю для себя ! Железо и медь у меня есть ! А симисторы и так самые мощные (ТС132-50-12-4). Железо у меня на 13кВт ! (сечение 80 кв.см). Для стабилизатора в 6кВт -с головой ! )
И тема вообще не про выгоду -а про расчеты. )

_________________
Куплю Микросхемы: К120ИЕ3 (К1ИЕ203)

Лучше 40 раз по разу,чем один раз 40 раз !

_________________
Мудрость приходит вместе с импотенцией.

_________________
Куплю Микросхемы: К120ИЕ3 (К1ИЕ203)

Лучше 40 раз по разу,чем один раз 40 раз !

_________________
Всё можно наладить,если вертеть в руках достаточно долго!

_________________
Куплю Микросхемы: К120ИЕ3 (К1ИЕ203)

Лучше 40 раз по разу,чем один раз 40 раз !

_________________
Куплю Микросхемы: К120ИЕ3 (К1ИЕ203)

Лучше 40 раз по разу,чем один раз 40 раз !

_________________
Куплю Микросхемы: К120ИЕ3 (К1ИЕ203)

Лучше 40 раз по разу,чем один раз 40 раз !

Нормально же объяснили, просто считай число витков на вольт, умножай на 260В (или какое там макс входное) — вот у тебя сетевая часть обмотки. Затем нужно рассчитать коэфф. трансформации. Например, на входе напряжение 260В, а нужно 230, считаешь 230/260=0,885, это число умножаешь на число витков сетевой обмотки — получил нужно количество витков, отсчитай с начала столько и делай отвод. Для понижающих всех так. Для повышения: в сети 160 а нужно 220, то 220/160=1,375, вычитаешь единицу и умножаешь на количество витков сетевой обмотки, сколько получилось — доматываешь и делаешь отвод.

Вроде понятно все написал, если совсем не доходит — разве что ректальная имплантация трансформаторного железа поможет

Давняя задумка — кольцевой трансформатор на сердечнике от асинхронного электродвигателя.

Когда-то очень давно, в начале 90-х я служил в Литве в г. Каунас на ведущем авиаремонтном заводе ВВС по вертолетам Ми-8. Сказать, что этот завод был большим, значит ничего не сказать. Одно то, что завод выпускал по 22 откапиталенных вертолета в месяц говорит о многом. Но речь не о том. Стал я там начальником смешанного цеха по ремонту вооружения, слесарно-механической обработки, гальваники и пр. и т.д. и т.п.
Чем отличались люди, работающие на авиаремонтных заводах, а это был мой второй завод (я начинал службу в Омске на таком же заводе, только значительно меньшем). Люди отличались высокой степенью «рукастости», то есть самодельщики, да еще вооруженные авиационными знаниями и технологиями.
Как известно, в те годы самодельщикам было очень тяжело, в магазинах практически ничего не было. Высоким статусом обладал гаражный «кулибин», владевший сварочным аппаратом. Вот и у меня давно зрело решение построить свой сварочник. Да еще такой, чтобы работал от простой гаражной розетки.
Перелопатив горы журналов и литературы по самодеятельности, я несколько раз встречал самодельные аппараты построенные на основе ЛАТРов.
ЛАТР — лабораторный автотрансформатор, однообмоточный, позволяющий регулировать напряжение от 0 до несколько большего, чем в сети напряжения, как правило, до 250 Вольт. Но главное полезное свойство для сварочного аппарата у ЛАТРа было то, что изготавливались они на тороидальном или, по-русски, кольцевом сердечнике, не имевшем зазоров и поэтому обладавшим практически 100% КПД, вследствие отсутствия потерь в магнитном зазоре. Мощность ЛАТРов выбиралась 10 А, т.е 2 кВт, что при 40-50 Вольтах на выходе, обеспечивало сварочный ток 40-50 Ампер. Это конечно было хорошо, но хотелось большего.
Теперь, немного теории, я думаю, полезной и для современных кулибиных.
Как известно, мощность трансформатора определяется, в основном, площадью сечения магнитопровода — сердечника, на который установлены, намотаны обмотки. Второй фактор — сечение обмоточных проводов, оно определяется по токам и ограничиваются еще и возможностью уместить обмотки в окна сердечника.
Итак, имеем сердечник, ранее работавший (новый врятли доступен) в трансформаторе известной мощности. Для расчета, радиолюбители-электронщики применяют упрощенные формулы.
Измеряем площадь сечения сердечника. Для Ш-образных пластин, из которых набран сердечник — площадь среднего штыря, куда будет намотана обмотка. Площадь вычисляется в квадратных сантиметрах
Измеряем ширину пластины, умнощаем на толщину набора пластин и вычисляем:
50/S, где 50 — коэффициент для трансформаторов длительной или непрерывной работы, можно применить 40 — для трансформаторов, выключаемых после работы. В результате этих вычислений получаем количество витков на 1 Вольт
Для намоточных проводов применяют правило — 1 квадратный мм сечения на 10 Ампер, ВНИМАНИЕ не путать площадь сечения с диаметром! Вспоминаем школу и вычисляем площадь круга.
И вот, возвращаясь к кольцевым сердечникам, попросил меня мастер слесарно-механического участка помочь ему сделать сварочник.
Не помню уже где, но вычитал идею использовать в качестве кольцевого сердечника статор от асинхронного электродвигателя. Нашел мастер на свалке старый 4 кВт двигатель (тогда еще всё валялось), разобрали мы его, выковыряли обмотки, выбили сердечник. На токарном станке срезали пазы для обмоток внутри сердечника, и я занялся расчетом. Намотали авиационными несгораемыми проводами (ПТЛ-200) вторичку сделали на 50 Вольт. Результат превзошел ожидания! Сварочник варил даже электродом пятеркой. И всё из розетки.
Впоследствии к нему добавили выпрямитель и и регулятор тока, мастер ходил как петух довольный.
Вот сейчас, заимев гараж, захотелось мне в его оснащение добавить этот чудо-трансформатор. О его возможном применении напишу ниже.
На свалке завода «приватизировал» статор от могучего электродвигателя. Весу в нем было, килограмм 60-70, но своё же не тянет, пыхтя, кряхтя и попёрдывая, завалил я его в багажник своей Волги.
Фото его еле нашел

Читайте также  Станок для профлиста своими руками

Разбив кувалдой ребристую чугуняку корлуса, я из него добыл сердечник статора. Медь обмоток выковыряли еще до меня.
Сын на работе вырезал на токарном станке пазы и приварил к сжимающим кольцам ножки и ручку для переноски этого тяжеловеса.

Обмерил сердечник, получилось 15 см — толщина набора, 2,5 см — ширина кольца. Площадь сечения — 37,5 кв. см.
Далее, обмотал сердечник стеклотканевой лентой, чтобы предохранить изоляцию проводов.

Далее, рассчитал число витков первичной обмотки. 220 х 50/37,5 = 293 Витка.
Далее — провод. На 20 Ампер (4 кВт из розетки) решил мотать сложенным вдвое проводом БПВЛ-0,7
Несколько запутанную бухту 440 метров перемотали сложив начало и конец.

Для намотки из ДВП я вырезал челнок.

Далее, пошло самое интересное и муторное — намотка. 293 витка — это и много и немного, по сравнению с маломощными трансформаторами.

В результате получилась обмотка в два слоя. Для контроля работы, тем же проводом намотал 2 витка, замерял напряжение — 2,4 Вольта. Всё правильно! В качестве баловства замыкаю концы, они начинают весело светиться.

На этом позавчера закончили. Вчера вечером занимались с Жекой Ascender с его БК Мультитроникс, а сегодня я опять продолжил эксперименты с уже наполовину намотанным трансформатором.
Тут надо прояснить для чего он нужен. Задумывался он как трансформатор для точечной сварки и споттера.
А тут еще назрела переборка передней подвески, решил попробовать его для разогрева прикипевших болтов и гаек.
Накрутил вторичку счетверенным проводом 5 мм диаметром. Концы временно, для экспериментов стянул на болты с большими шайбами.

Она выдала 1,2 Вольта.

Далее — пробы. Беру шпильку М12 с накрученной гайкой. Прижимаю один коней обмотки к свободному концу шпильки, второй — к гайке. Трансформатор глухо зарычал, свет при этом не потух. Секунд 5-10 я держал шпильку под током, потом мне стало горячо, держал-то голыми руками, разогрелись болты, стягивающие провода. И вот, что интересно, испытуемая шпилька была просто теплой, зато гайка почти дымилась. Это можно объяснить худшим сопротивлением в резьбе, по сравнению со сплошным телом шпильки. Основная энергия выделилась на сопротивлении — т.е. резьбе. Это очень хорошо, в закисших соединениях важно разогреть ржавчину в резьбе.

В дальнейшем будем пробовать на объекте, изменяя напряжение и ток.
Еще одно применение данного трансформатора — разделитель. Поскольку первичная обмотка намотана двойным проводом, то, расцепив их, получаем две идентичные обмотки. Это позволит «отвязаться» от «земли» в обычной розетке и пользоваться 220 Вольт в сырых местах, не боясь электротравмы. Ударит только, если тупо взяться за оба провода. Если держаться за один, можно стоять босиком в луже и ничего не произойдет.

Расчет автотрансформатора своими руками

Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100—200 Вт проводится следующим образом.

Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.

Далее, принимая КПД трансформатора небольшой мощности, равным около 80 %, определяем первичную мощность:

Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:

где s — в квадратных сантиметрах, а Р1 — в ваттах.

По значению S определяется число витков w’ на один вольт. При использовании трансформаторной стали

Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w’ на 20—30 %.

Теперь можно рассчитать число витков обмоток и т.д.

В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5—10 % больше рассчитанного.

Ток первичной обмотки

Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:

Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:

Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.

В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз — диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2—3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.

В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.

Определяем общую мощность вторичных обмоток:

Мощность первичной цепи

Находим площадь сечения сердечника из трансформаторной стали:

Число витков на один вольт

Ток первичной обмотки

Число витков и диаметр проводов обмоток равны:

• для первичной обмотки

• для повышающей обмотки

• для обмотки накала ламп

Предположим, что окно сердечника имеет площадь сечения 5×3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.

Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:

• для первичной обмотки

• для повышающей обмотки

• для обмотки накала ламп

Общая площадь сечения обмоток составляет примерно 430 мм2.

Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.

Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.

Эта мощность определяется по формулам:

— для повышающего автотрансформатора

— для понижающего автотрансформатора, причем

Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.

Затем определяется расчетная мощность Р, которая может быть принята равной 1,15•Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д

алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 — I2, если автотрансформатор повышающий, и I2 — I1 если он понижающий.

Источник информации: «Школа для электрика: электротехника и электроника. Статьи, советы, полезная информация.

Автотрансформатор схема своими руками

Принцип действия

Основной принцип действия автотрансформатора аналогичен обычному аппарату:

Особенность автотрансформатора в том, что часть витков первичной обмотки является также вторичной. В связи с тем, что ЭДС в первичной и вторичной обмотках направлены встречно, ток в общей части катушки I¹² равен разнице I¹ и I². При равенстве входного и выходного напряжения или Ктр=1 I¹² определяется индуктивным сопротивлением катушки.

Недостатки эксплуатации

Несмотря на то что автотрансформатор гораздо эффективнее и дешевле в эксплуатации, чем обычный трансформатор, в его использовании тоже могут возникать проблемы. Одним из серьезных недостатков является невозможность гальванической развязки обмоток.

Читайте также  Приспособления для дрели своими руками

Незначительный рассеивающийся электрический поток между обмотками может спровоцировать короткое замыкание при внезапных неисправностях и неполадках. Чтобы не спровоцировать нарушение функционирования агрегатов, вторичная и первичная обмотка должны иметь идентичные соединения.

В представленной системе затрудняется сохранение электромагнитного баланса, нормализовать который можно увеличением корпуса оборудования. При большой трансформации диапазона не получится существенная экономия энергоресурсов.

Принцип работы автотрансформатора и его конструктивные особенности не позволяют сделать систему с односторонним заземлением. При ремонте и устранении аварийных ситуаций персонал, обслуживающий оборудование, может подвергаться опасности из-за вероятности возникновения высшего напряжение и на низших обмотках. В таком случае установится соединение всех элементов с высоковольтной частью, а изоляция проводников может оказаться пробитой, что не допускается правилами безопасности.

Мощность автотрансформатора

Мощность любого электроаппарата равна произведению тока на напряжение Р=I*A. В обычном трансформаторе она равна мощности нагрузки с учетом КПД.

Мощность автотрансформатора рассчитывается немного иначе. В повышающем напряжение аппарате она складывается из мощности первичной обмотки части Р¹²=I¹²*U¹² и мощности повышающей обмотки Р²=I²*U⅔. В связи с тем, что ток, протекающий через первичную катушку меньше, чем ток нагрузки, то мощность автотрансформатора меньше мощности нагрузки. Фактически, мощность аппарата определяется разностью первичного и вторичного напряжений и током вторичной обмотки P=(U¹-U²)*I².

Особенно это заметно при небольших (10-20%) отклонениях выходного напряжения. Аналогичным образом рассчитывается понижающий автотрансформатор.

Информация! Это позволяет уменьшить сечение магнитопровода и диаметр провода обмотки. В связи с этим автотрансформатор легче и дешевле обычного устройства.

Однофазные и трехфазные приборы

В разных отраслях сегодня используются трехфазные и однофазные агрегаты. Последние представлены таким типом оборудования, как ЛАТР (лабораторные автотрансформаторы, рассчитанные на низковольтные сети). В линиях с повышенным напряжением используются понижающие автотрансформаторы, например, 220/100 и 220/110, в которых вторичная обмотка является частью первичной. В конструкциях повышающего типа первичная обмотка — это часть вторичного контура.

Схема автотрансформатора однофазного типа предполагает несколько отводов, которые ответвляются от основной катушки. Именно они и определяют понижающую или повышающую способность агрегата. В трехфазных конструкциях может быть два или три контура, а соединение обмоток напоминает по форме звезду. Они предназначены для работы нагревательных элементов в печах.

Аппараты, представленные с тремя обмотками, являются рабочими элементами высоковольтных сетей. Тип контакта предполагает соединения нулевого провода со звездой, что позволяет понизить напряжение, повысить КПД линии и уменьшить расходы на передачу энергии. Одним из недостатков является увеличение количества токов короткого замыкания.

Что такое ЛАТР

Кроме силовых аппаратов, заменяющих обычные трансформаторы, в школах, институтах и лабораториях используются ЛАТРы – Лабораторные АвтоТРанформаторы. Эти устройства используются для плавного изменения напряжения на выходе аппарата. Самые распространенные конструкции представляют из себя катушку, намотанную на тороидальном магнитопроводе. С одной из сторон провод очищен от лака и по нему при помощи поворотного механизма двигается графитный ролик.

Питающее напряжение подаётся на концы катушки, а вторичное снимается с одного из концов и графитного ролика. Поэтому ЛАТР не может поднимать напряжение выше сетевого, в некоторых модификациях выше 250В.

Кроме катушечных, есть электронные ЛАТРы. Фактически, это не автотрансформатор, а регулятор напряжения. Есть разные виды таких устройств:

Совет! Для того, чтобы получить напряжение выше сетевого, ЛАТР подключается ко вторичной обмотке повышающего трансформатора.

Устройство и технические характеристики

Сфера применения автотрансформаторов — питание бытовой техники, промышленные электросети, пуск асинхронных электродвигателей. На крупных производственных объектах они необходимы для повышения напряжения и одновременного уменьшения возможных потерь в линиях электропередач. Благодаря особенностям конструкции, оборудование составило серьезную конкуренцию обычным трансформаторам. В зависимости от назначения, устройствам присваивается буквенное наименование:

  • С — для собственных нужд отдельных электрических станций.
  • П — для электролиний с постоянным током.
  • М — для металлургических предприятий.
  • ПН — для подключения электронасосов погружного типа.
  • Б — для буровых установок и бетоногрейных установок.
  • Э — для экскаваторов с электрооборудованием.
  • ТО — для организации временного освещения или тепловой обработки грунта или бетона.

В преобразователях электромагнитного типа передача энергии между обмотками происходит благодаря возникновению магнитного поля, сосредоточенного внутри магнитопровода. Отличие автотрансформатора от трансформатора заключается в наличии еще и электрической связи. В момент установки уменьшенного тока в той части обмотки, которая является общей между двумя цепями, возникает увеличение или понижение напряжения. По мнению специалистов, такое устройство позволяет сэкономить сталь, сократив ее количество для создания магнитопровода с меньшим сечением.

Большинство других деталей в конструкции практически ничем не отличается от комплектующих трансформатора. Принцип функционирования агрегата заключается в следующем: в момент создания нагрузки по обмотке перемещается электрический поток, а по проводнику — ток первичный. Происходит геометрическое сложение двух потоков, в результате чего на обмотку выдаются совсем малые показатели.

Изготовление самодельного ЛАТРа

В продаже есть достаточно готовых устройств, но при необходимости его можно сделать самостоятельно. За основу лучше взять трансформатор на О- или Ш-образном магнитопроводе. Изготовление ЛАТРа на тороидальном железе сводится к его перемотке и требует очень высокой аккуратности при наматывании катушки.

Подготовка материала

Для изготовления регулируемого автотрансформатора необходимы:

Расчет провода

Перед началом намотки катушки необходимо определить сечение провода и необходимое количество витков/вольт (n/v). Этот расчёт производится по поперечному сечению магнитопровода при помощи онлайн-калькуляторов или по специальным таблицам.

Если для изготовления устройства используется исправный трансформатор, то эти параметры определяются по имеющимся обмоткам:

Совет! Если первичная обмотка не была пропитана лаком и разматывается без нарушения изоляции, то допускается использовать её для намотки катушки автотрансформатора.

Схема

Перед началом работ составляется схема обмотки с указанием количества витков и напряжением на каждом из выводов. В отличие от обычного трансформатора автотрансформатор имеет только одну обмотку, которая изображается с одной из сторон черты, символизирующей магнитопровод.

Для расчетов витков необходимо определить число выводов. Оно зависит от количества положений многопозиционного переключателя. Один из отводов может совпадать с сетевым выводом:

Совет! При необходимости сделать повышающий автотрансформатор к первичной обмотке добавляется необходимое количество витков. Для этого допускается использовать провод, снятый со вторичной обмотки.

Намотка катушки

После выполнения всех расчётов производится намотка катушки. Она выполняется на готовом или специально изготовленном каркасе вручную или при помощи намоточного станка:

Процесс сборки

После завершения намотки и высыхания лака производится сборка автотрансформатора:

Проверка

После сборки работоспособность устройства необходимо проверить:

Устройство автотрансформатора

Имеется одна общая обмотка, расположенная на магнитопроводе ЛАТРа, а от нее уже отходят три дополнительных вывода. У старых моделей автотрансформатора на вторичной обмотке расположен токосъемный контакт, позволяющий:

Наиболее распространенный тип автотрансформатора — это тороидальный магнитопровод. Он представляет собой сердечник в форме кольца, сделанный из электротехнической стали.

На сердечник намотана медная проволока, или обмотка. Кроме того, конструкция прибора имеет дополнительную отпайку — отвод от обмотки. В целом контактов получается ровно три.

Для больших трансформаций лучше всего не использовать ЛАТР. Причины в следующем:

Типы агрегатов

В зависимости от схемы автотрансформатора и других особенностей конструкции выделяют несколько разновидностей оборудования. Наиболее популярными являются 8 из них, остальные встречаются реже. Каждый из них выбирается в соответствии с будущими условиями эксплуатации:

  • АТД — оборудование с устаревшей конструкцией мощностью в районе 25 Вт.
  • ВУ- 25-Б — позволяет уравнивать токи на вторичной обмотке, если используется схема дифференциальной защиты для силового трансформатора.
  • ЛАТР-1 — лабораторный автотрансформатор, который может использоваться при 127 В.
  • ЛАТР-2 — предназначен для бытовых сетей с напряжением 220 В, регулирует показатели напряжения контактом, который скользит по виткам обмотки.
  • ДАТР-1 — разработан для функционирования в условиях невысокой нагрузки.
  • РНО — предназначен для сетей с повышенной нагрузкой.
  • АТНЦ — незаменимое оборудование в сфере телеизмерений.
  • РНТ — оборудование, рассчитанное на максимально сильные нагрузки в сетях особого назначения.

Кроме того, классификация предполагает деление агрегатов на группы с малой мощностью (не более 1 кВ), средней мощностью свыше 1 кВ и силовые приборы. Использование автотрансформаторов позволяет повысить КПД в работе энергетических систем, а также уменьшить стоимость транспортировки энергии.

Схема электронного прибора

Купить надежный ЛАТР при имеющемся ассортименте — задача не из легких. Слишком много низкокачественных изделий представлено на рынке. Как вариант, можно приобрести промышленный образец, но цены на него довольно высокие, да и габариты немаленькие. В этом случае более приемлемым вариантом будет создать автотрансформатор своими руками.

Необходимые для сборки материалы

Материалы, которые обязательно понадобятся для сборки самодельного электронного ЛАТРа на полевом транзисторе, следующие:

Расчёт обмотки ЛАТРа

Для начала необходимо определиться, в каких пределах на тиристорах будет работать ЛАТР. Оптимальное значение питания сети — 220 В. Значения вторичных напряжений — соответственно, 127, 180 и 250 В. Мощность при таких параметрах не должна превышать 300 Вт. Но можно определить эти значения и самостоятельно, главное, чтобы всё друг другу соответствовало.
Теперь нужно рассчитать обмотку. Рассчитывать её надо по большему току. Наибольшее значение тока можно получить, преобразовывая напряжение 200 В в 127 В. Автотрансформатор при таких условиях становится понижающим. Максимальный ток, который проходит в обмотке обеих сетей, рассчитывается следующим образом: