Как сделать лазерный гравер своими руками

Лазерный гравер из старых DVD-Rom

Добрый день, со временем у меня накопилось много нерабочих CD или DVD приводов. В интернете много описаний изготовления разного рода лазерных граверов сделанных на основе таких приводов. Сегодня я хочу поделиться с вами своим опытом по изготовлению такого гравера. В качестве контролера – Arduino Uno

Для изготовления лазерного гравера или ЧПУ (числовое программное управление) станка нам понадобится:

— DVD-ROM или CD-ROM
— Фанера толщиной 10 мм (можно использовать и 6мм)
— Саморезы по дереву 2.5 х 25 мм, 2.5 х 10 мм
— Arduino Uno (можно использовать совместимые платы)
— Драйвер двигателя L9110S 2 шт.
— Лазер 1000 МВт 405nm Blueviolet
— Аналоговый джойстик
— Кнопка
— Блок питания на 5В (я буду использовать старый, но рабочий компьютерный блок питания)
— Транзистор TIP120 ил TIP122
— Резистор 2.2 kOм, 0.25 ВТ
— Соединительные провода
— Элетролобзик
— Дрель
— Сверла по дереву 2мм, 3мм, 4мм
— Винт 4 мм х20 мм
— Гайки и шайбы 4 мм
— Паяльник
— Припой, канифоль

Необходимо удалить всю оптику и плату, находящуюся на механизме:

Далее отрезаем шлейф, идущий от шагового двигателя, и припаиваем к выводам провода:

К одному из механизмов нужно приклеить столик. Можно изготовить столик из той-же фанеры, вырезав квадрат со стороной 80 мм. Или вырезать такой-же квадрат из корпуса CD/DVD-ROM-а. Тогда деталь, которую планируете гравировать, можно будет прижимать магнитом. Вырезав квадрат, приклеиваем его:

Ко второму механизму нужно приклеить пластинку к которой в последующем будет крепиться лазер. Вариантов изготовления масса и зависит от того что у вас есть под рукой. Я использовал пластиковую модельную пластину. На мой взгляд, это самый удобный вариант. У меня получилось следующее:

Шаг 2 Изготовление корпуса.
Для изготовления корпуса нашего гравера мы будем использовать фанеру толщиной 10 мм. Если ее нет, можно взять фанеру и меньшей толщины, например 6 мм, или заменить фанеру на пластик. Необходимо распечатать следующие фото и по этим шаблонам вырезать одну нижнюю часть, одну верхнюю и две боковых. В местах отмеченных кружком проделать отверстия для саморезов диаметром 3мм.

После резки должно получится следующее:

В верхней и нижней частях необходимо проделать отверстия 4 мм под крепления ваших частей приводов. Я не могу сразу разметить эти отверстия, так они бывают разные:

При сборке необходимо использовать саморезы по дереву 2.5 х 25 мм. В местах вкручивания саморезов необходимо предварительно просверлить отверстия сверлом 2 мм. Иначе фанера может треснуть. Если предполагается собирать корпус из пластика, необходимо предусмотреть соединение деталей металлическими уголками и использовать винты диаметром 3 мм. Для придания эстетического вида нашему граверу стоит зашкурить мелкой наждачной все детали, при желании можно покрасить. Мне нравится черный, я покрасил все детали в черный цвет аэрозольной краской.

Шаг 3 Подготовка блока питания.
Для питания гравера необходим блок питания на 5 вольт с силой тока не меньше 1.5 Ампер. Я буду использовать старый блок питания от компьютера. Отрезаем все колодки. Для запуска блока питания необходимо замкнуть зеленый (PC_ON) и черный (GND) провода. Можно поставить выключатель между этими проводами для удобства, а можно просто их скрутить между собой и использовать выключатель блока питания, если он есть.

Для подключения нагрузки выводим красный (+5), желтый (+12) и черный (GND) провода. Фиолетовый (дежурные +5) может выдать максиму 2 ампер или меньше, в зависимости от блока питания. Напряжение на нем есть даже при разомкнутых зеленом и черном проводах.

Для удобства приклеиваем гравер на двусторонний скотч к блоку питания.

Шаг 4 Джойстик для ручного управления.
Для выставления начальной позиции гравировки будем использовать аналоговый джойстик и кнопка. Размещаем все на монтажной плате и выводим провода для подключения к Arduino. Прикручиваем к корпусу:

Подключаем по следующей схеме:

Шаг 5 Размещаем электрику.
Будем размещать всю электрику сзади нашего гравера. Прикручиваем Arduino Uno и драйвера двигателя саморезами 2.5 х 10 мм. Соединяем следующим образом:

Провода от шагового двигателя по оси Х (столик) подключаем к выходам драйвера двигателя L9110S. Далее так:

Провода от шагового двигателя по оси Y (лазер) подключаем к выходам драйвера двигателя L9110S. Далее так:

Если при первом запуске двигатели будут гудеть, но не двигаться, стоит поменять местами прикрученные провода от двигателей.

Не забудьте подключить:

Шаг 6 Установка лазера.
В интернете полно схем и инструкций по изготовлению лазера из лазерного диода от пишущего DVD-Rom. Этот процесс долог и сложен. Поэтому я купил готовый лазер с драйвером и радиатором охлаждения. Это значительно упрощает процесс изготовления лазерного гравера. Лазер потребляет до 500 mA, поэтому его нельзя подключать напрямую к Arduino. Будем подключать лазер через транзистор TIP120 или TIP122.

Резистор 2.2 kOm необходимо включить в разрыв между Base транзистора и pin 2 Arduino.

Соединений здесь немного поэтому паяем все на весу, изолируем и прикручиваем транзистор сзади к корпусу:

Для прочной фиксации лазера необходимо вырезать еще одну пластинку из того же пластика что и приклеенная к оси Y пластина. Прикручиваем к ней радиатор охлаждения лазера винтами входящими в комплект к лазеру:

Внутрь радиатора вставляем лазер и фиксируем его винтами, так же входящие в комплект к лазеру:

И прикручиваем всю эту конструкцию на наш гравер:

Шаг 7 Среда программирования Arduino IDE.
Следует скачать и установить Arduino IDE. Лучше всего это сделать с официального сайта проекта.

Последняя версия на момент написания инструкции ARDUINO 1.8.5. Никаких дополнительных библиотек не требуется. Следует подключить Arduino Uno к компьютеру и залить в нее следующий скетч:

После заливки скетча следует проверить, что гравер работает как надо.

Внимание! Лазер это не игрушка! Луч лазера, даже не сфокусированный, даже отраженный, при попадании в глаза повреждает сетчатку глаза. Настоятельно рекомендую приобрести защитные очки! И все работы по проверки и настройке проводит только в защитных очках. Так же не следует смотреть без очков на работе лазера в процессе гравировки.

Включаем питание. При изменении положения джойстика вперед – назад должен двигаться столик, влево вправо – двигаться ось Y, то есть лазер. При нажатии кнопки лазер должен включаться.

Далее необходимо настроить фокус лазера. Надеваем защитные очки! Подкладываем на столик маленький лист бумаги, и нажимает на кнопку. Изменяя положения линзы (поворачиваем линзу), находим положение при котором точка лазера на листке минимальна.

Шаг 8 Подготовка Processing.
Для передачи изображения на гравер будем использовать среду программирования Processing. Необходимо скачать с официального сайта .

Следуя инструкции по установки, ставим Processing на компьютер. Открываем проект:

Программа будет отправлять данные для гравировки картинки с именем «Arduino Logo 300×300.png». Для гравировки другой картинки следует, следует ее вначале подготовить. Картинка должна быть расширения PNG, размером 300х300 точек и черно – белая. Имя картинки нужно написать в строке:

Отправлять данные программа будет в первый по очереди com-порт. Следует открыть диспетчер устройств на компьютере, и посмотреть стоит ли первым в списке com-портов ваша Arduino. Если первая, тогда ничего менять не надо, если нет – меняет «0» в строке на номер com-порта в списке:

Подготовив все, надеваем защитные очки, нажимает кнопу старта в окне processing и наслаждаем процессом гравирования.

Самодельный Лазерный гравёр с ЧПУ, в домашних условиях.

Кроме созданий проектов на Arduino, ещё я увлекаюсь созданием самодельных станков с ЧПУ. На счету у меня собрано больше 5 штук самодельных ЧПУ станков с различной кинематикой перемещения и разнообразного назначения. Сегодня пойдет речь о самодельном лазерном гравере, который я собрал в домашних условиях, а точнее в квартире. При этом использовал подручные материалы, которые лежат без дела, или которые можно не задорого купить в ближайшем магазине. С чего все началось, и для чего я собрал лазерный гравировальный станок из хлама, сейчас расскажу.

Зачем собирать самодельный ЧПУ станок из хлама?

Один знакомый сказал, что ЧПУ станки это сложно и для того, чтобы собрать работающий станок нужно очень много знать и уметь. Я ответил, что я собираю ЧПУ станки из подручных материалов, и многие работают у меня больше 2 лет верой и правдой. Показал, что я на них делаю, и где можно почитать описание моих проектов.

Спустя некоторое время этот знакомый мне говорит, что он рассказал друзьям, и они не верят, что можно собрать ЧПУ станок в домашних условиях. Да даже не то, чтобы он работал, как из магазина, а хотя бы выполнял какую-нибудь работу. И тут он меня спрашивает: «Ты можешь собрать станок не из старых принтеров, мебельных направляющих, а из материалов, которые я бы купил сам, и повторил бы станок?» Я сказал, что это вполне возможно, и приступил к реализации мини станка с ЧПУ. Скорее всего, это не последний мини ЧПУ станок в домашних условиях. В ближайшее время сделаю еще пару вариантов.

Сборка самодельного лазерного гравера с ЧПУ.

Механическая часть самодельного лазерного гравера.

Недавно делал узел из карандашей (каретку для ЧПУ), и на основе данной каретки решил собрать лазерный гравер с ЧПУ. Но нужно, как минимум, 2 оси, поэтому собрал второй узел, но немного уже. Вот так выглядят узлы оси X и Y для самодельного лазерного гравера.

Как собирал каретку, можете почитать в предыдущей статье. Про нее могу сказать одно: сделана она из карандашей, строительной шпильки и фанеры.

Читайте также  Как сделать кромкообрезной станок своими руками

Закрепил с помощью реек и фанеры узлы осей Y и X. Вот такой каркас станка получился. Пора приступить к электронной составляющей самодельного ЧПУ гравировального станка.

Электроника самодельного лазерного гравера.

Доставать лазер из старого DVD привода не стал, так как меня просили сделать ЧПУ станок, который можно повторить, и все узлы можно было бы купить, например, на AliExpress. Поэтому буду использовать лазерный модуль с TTL контролером от моего лазерного гравера. Обзор гравера можно посмотреть тут.

Лазерный модуль можно использовать в такой самоделке и подешевле, например, на 500 mw.

Так как я увлекаюсь еще и Arduin, то мозгом станка будет Arduino UNO и CNC shield v3. Драйвера буду использовать самые дешёвые A4988. Описание драйверов A4988 читайте в этой статье:

Описание CNC shield v3 читайте в статье:

Для того, чтобы закрепить электронику, сделал заготовку из фанеры, которая будет крепиться с задней стороны гравера.

После чего, закрепил электронику и установил на место, где будет все стоять.

Пришло время все подключить и запрограммировать.

Схема подключения cnc shield v3.0 + arduino uno + TTl и лазер.

Подключаем все компоненты по схеме.

Правда, у меня не установлены концевые выключатели. Схему взял из интернета, самому рисовать стало лень. Но когда буду писать обзорную статью про подключение электроники, обязательно все нарисую.

Как видим, схема достаточно простая, и запутаться тут сложно. Нам нужно к шилду подключить 2 шаговых двигателя. Один подключаем в разъем, где написано X, второй в разъем с надписью Y. Соответственно, один двигатель перемещает по оси X, второй по оси Y.

C подключением лазера будьте внимательны, в зависимости от версии прошивки, подключение TTL к Arduino может быть разным.

Внимание. С прошивки GBRL 9.0i были поменяны местами Z-Max (D12) и Spn_EN (D11).

TTL модуль подключаем к D11, который является ШИМ портом, — это необходимо для управления мощностью лазера, с помощью ШИМ.

Теперь, если вы желаете подключить концевик Z_Max, то его необходимо подключить в Spn_EN, а включение лазера необходимо подключать в Z+. Вот такая путаница с распиновкой на шилде.

После подключения уложил провода, чтобы ничего не торчало и не мешало работе станка.

Прошивка для лазерного гравёра на Arduino.

Для того, чтобы гравер заработал, в Arduino нужно загрузить код. Где же его взять? Код писать самостоятельно не нужно. Добрые люди уже написали и проверили работу прошивки на тысячах, а может и на сотнях тысяч различных станках с ЧПУ. Скачать прошивку GRBL 1.1 можно с репозитория, или внизу статьи, в разделе Материалы для скачивания.

Более подробно о прошивке и настройке GRBL 1.1 буду рассказывать в следующей статье.

Настройка и калибровка самодельного станка с ЧПУ.

После того, как мы загрузили прошивку, все настройки будут стандартные, и их нужно поменять под ваш станок. Это не так и сложно, но процесс занимает некоторое время. Для калибровки нужно перемещать по оси лазерный модуль, и смотреть, как точно происходит перемещение. Например, вы переместили на 100 мм, а станок переместился на 102 мм. Это все настраивается в прошивке. Полный процесс калибровки буду рассказывать в следующей статье. А сейчас выложу скриншот моих настроек GRBL 1.1 для лазерного гравировального станка.

Программа LaserGRBL для управления лазерным гравером на Arduino.

Осталось установить программное обеспечения для компьютера, которое позволит гравировать, выбрав понравившуюся картинку. Я буду гравировать векторный логотип сайта и елочную игрушку. Исходники будут в разделе материалы для скачивания.

LaserGRBL поддерживает гравировку растровой и векторной графики, что позволяет облегчить поиск материала для гравировки.

Подробнее о программе LaserGRBL напишу отдельную статью, так как там есть некоторые фишки, которые упрощают работу с лазерным гравером. Некоторые из них вы можете увидеть в видео.

А сейчас покажу, как выглядит исходное изображение, загруженное в программу LaserGRBL, и что получается после гравировки.

Подведём итог.

В домашних условиях собрать лазерный гравер не составит большого труда. Но перед сборкой нужно определиться, чего мы ожидаем. В связи с тем, что данный станок я собрал попутно, то лазерный гравер не является первоначальной задачей. И выбор ходового винта, для данного станка, является не правильным решением. Потому что перемещение происходит медленно, а гравировка делается быстро, и я использовал только 50% мощности лазера. Это не приемлемо. Что же делать? Нужно использовать не ходовые винты, а ременную передачу, что увеличит скорость и плавность перемещения.

Если присмотреться на гравированные изделия, то можно увидеть небольшую рябь. Это связанно с тем, что по оси X ходовой винт имеет изгиб и при перемещении происходит раскачивание лазерной головы. Если такое колебание будет при фрезеровке, то зажатая фреза в материал просто не допустит такие небольшие колебания.

Более подробно настройку станка и программное обеспечение разберу в следующих статьях:

Понравился проект Самодельный Лазерный гравёр с ЧПУ, в домашних условиях? Не забудь поделиться с друзьями в соц. сетях.

А также подписаться на наш канал на YouTube, вступить в группу Вконтакте, в группу на Facebook.

Спасибо за внимание!

Технологии начинаются с простого!

Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения

Многие из тех домашних умельцев, которые в своей мастерской занимаются изготовлением и декоративным оформлением изделий из древесины и других материалов, наверняка задумывались над тем, как сделать лазерный гравер своими руками. Наличие такого оборудования, серийные модели которого стоят достаточно дорого, позволяет не только наносить на поверхность обрабатываемого изделия сложнейшие рисунки с высокой точностью и детализацией, но и осуществлять лазерную резку различных материалов.

Самодельный лазерный станок в процессе гравировки по дереву

Самодельный лазерный гравер, который обойдется значительно дешевле, чем серийная модель, можно изготовить даже в том случае, если вы не обладаете глубокими знаниями в электронике и механике. Лазерный гравер предлагаемой конструкции собирается на аппаратной платформе «Ардуино» (Arduino) и имеет мощность 3 Вт, тогда как у промышленных моделей этот параметр составляет не менее 400 Вт. Однако даже такая невысокая мощность позволяет использовать данный аппарат для резки изделий из пенополистирола, пробковых листов, пластика и картона, а также выполнять качественную лазерную гравировку.

Этот гравер справится и с тонким пластиком

Необходимые материалы

Для того чтобы самостоятельно изготовить лазерный гравер на Arduino, потребуются следующие расходные материалы, механизмы и инструменты:

  • аппаратная платформа Arduino R3;
  • плата Proto Board, оснащенная дисплеем;
  • шаговые двигатели, в качестве которых можно использовать электромоторы из принтера или из DVD-плеера;
  • лазер, мощность которого составляет 3 Вт;
  • устройство для охлаждения лазера;
  • регулятор напряжения постоянного тока DC-DC;
  • транзистор MOSFET;
  • электронные платы, при помощи которых осуществляется управление двигателями лазерного гравера;
  • выключатели концевого типа;
  • корпус, в котором можно разместить все элементы конструкции самодельного гравера;
  • зубчатые ремни и шкивы для их установки;
  • шарикоподшипники различных типоразмеров;
  • четыре деревянных доски (две из них с размерами 135х10х2 см, а две другие – 125х10х2 см);
  • четыре металлических стержня круглого сечения, диаметр которых составляет 10 мм;
  • болты, гайки и винты;
  • смазочный материал;
  • стяжки-хомуты;
  • компьютер;
  • сверла различного диаметра;
  • циркулярная пила;
  • наждачная бумага;
  • тиски;
  • стандартный набор слесарных инструментов.

Наибольшего вложения потребует электронная часть станка

Электрическая часть самодельного лазерного гравера

Основным элементом электрической схемы представленного устройства является лазерный излучатель, на вход которого должно подаваться постоянное напряжение со значением, не превышающим допустимых параметров. Если не соблюсти данное требование, лазер может просто сгореть. Лазерный излучатель, используемый в гравировальной установке представленной конструкции, рассчитан на напряжение 5 В и силу тока, не превышающую 2,4 А, поэтому настройка регулятора DC-DC должна быть выполнена на силу тока 2 А и напряжение до 5 В.

Электрическая схема гравера

Транзистор MOSFET, который является важнейшим элементом электрической части лазерного гравера, необходим для того, чтобы, получая сигнал от контроллера «Ардуино», включать и выключать лазерный излучатель. Электрический сигнал, вырабатываемый контроллером, является очень слабым, поэтому воспринимать его, а затем отпирать и запирать контур питания лазера может только транзистор MOSFET. В электрической схеме лазерного гравера такой транзистор устанавливается между плюсовым контактом лазера и минусовым регулятора постоянного тока.

Шаговые электродвигатели лазерного гравера подключаются через одну электронную плату управления, что обеспечивает синхронность их работы. Благодаря такому подключению зубчатые ремни, приводимые в движение несколькими двигателями, не провисают и сохраняют стабильное натяжение в процессе своей работы, что обеспечивает качество и точность выполняемой обработки.

Следует иметь в виду, что лазерный диод, используемый в самодельной гравировальной установке, не должен перегреваться.

Для этого необходимо обеспечить его эффективное охлаждение. Решается такая задача достаточно просто: рядом с диодом устанавливают обычный компьютерный вентилятор. Чтобы исключить перегрев плат управления работой шаговых электродвигателей, рядом с ними также размещают компьютерные кулеры, так как обычные радиаторы с такой задачей не справляются.

Фотографии процесса сборки электросхемы

Процесс сборки

Самодельный гравировальный станок предложенной конструкции – это устройство челночного типа, один из подвижных элементов которого отвечает за перемещение по оси Y, а два других, спаренных, – за перемещение по оси X. За ось Z, которая также оговаривается в параметрах такого 3D-принтера, принимается глубина, на которую осуществляется прожиг обрабатываемого материала. Глубина отверстий, в которые устанавливаются элементы челночного механизма лазерного гравера, должна составлять не менее 12 мм.

Рамка рабочего стола – размеры и допуски

Читайте также  Как сделать пилораму своими руками

В качестве направляющих элементов, по которым будет перемещаться рабочая головка лазерного гравировального устройства, могут выступать алюминиевые стержни диаметром не менее 10 мм. Если найти стержни из алюминия не представляется возможным, для этих целей можно использовать стальные направляющие такого же диаметра. Необходимость применения стержней именно такого диаметра объясняется тем, что в таком случае рабочая головка лазерного гравировального устройства не будет провисать.

Изготовление подвижной каретки

Поверхность стержней, которые будут использоваться в качестве направляющих элементов для лазерного гравировального устройства, надо очистить от заводской смазки и тщательно отшлифовать до идеальной гладкости. Затем на них следует нанести смазывающий состав на основе белого лития, который улучшит процесс скольжения.

Установка шаговых двигателей на корпус самодельного гравировального устройства осуществляется при помощи кронштейнов, изготовленных из листового металла. Чтобы сделать такой кронштейн, лист металла, ширина которого приблизительно соответствует ширине самого двигателя, а длина в два раза превышает длину его основания, сгибают под прямым углом. На поверхности такого кронштейна, где будет располагаться основание электромотора, сверлят 6 отверстий, 4 из которых необходимы для фиксации самого двигателя, а два остальных – для крепления кронштейна к корпусу при помощи обычных саморезов.

Для установки на вал электромотора приводного механизма, состоящего из двух шкивов, шайбы и болта, также используется кусок металлического листа соответствующего размера. Чтобы смонтировать такой узел, из металлического листа формируют П-образный профиль, в котором просверливаются отверстия для его крепления к корпусу гравера и для выхода вала электродвигателя. Шкивы, на которые будут надеваться зубчатые ремни, насаживаются на вал приводного электромотора и размещаются во внутренней части П-образного профиля. Надетые на шкивы зубчатые ремни, которые должны приводить в движение челноки гравировального устройства, соединяются с их деревянными основаниями при помощи саморезов.

Установка шаговых двигателей

Установка программного обеспечения

Вашему лазерному гроверу, который должен работать в автоматическом режиме, потребуется не только установка, но и настройка специального программного обеспечения. Важнейшим элементом такого обеспечения является программа, которая позволяет создавать контуры желаемого рисунка и преобразовывать их под расширение, понятное управляющим элементам лазерного гравера. Такая программа имеется в свободном доступе, и ее можно без особых проблем скачать на свой компьютер.

Программа, скачанная на управляющий гравировальным устройством компьютер, распаковывается из архива и устанавливается. Кроме того, вам потребуется библиотека контуров, а также программа, которая будет отправлять данные по создаваемому рисунку или надписи на контроллер «Ардуино». Такую библиотеку (как и программу для передачи данных на контроллер) также можно найти в свободном доступе. Для того чтобы ваша лазерная самоделка работала корректно, а гравировка, выполняемая с ее помощью, была качественной, вам потребуется настройка и самого контроллера под параметры гравировального устройства.

Особенности использования контуров

Если с вопросом о том, как сделать ручной лазерный гравер, вы уже разобрались, то необходимо прояснить и вопрос о параметрах контуров, которые могут наноситься при помощи такого устройства. Такие контуры, внутренняя часть которых не заполняется даже в том случае, если исходный рисунок закрашен, должны передаваться на контроллер гравера файлами не в пиксельном (jpeg), а векторном формате. Это значит, что изображение или надпись, наносимые на поверхность обрабатываемого изделия при помощи такого гравера, будут состоять не из пикселей, а из точек. Такие изображения и надписи можно как угодно масштабировать, ориентируясь на площадь поверхности, на которую они должны быть нанесены.

При помощи лазерного гравера на поверхность обрабатываемого изделия можно нанести практически любой рисунок и надпись, но для этого их компьютерные макеты необходимо перевести в векторный формат. Выполнить такую процедуру несложно: для этого используются специальные программы Inkscape или Adobe Illustrator. Файл, уже переведенный в векторный формат, необходимо преобразовать еще раз, чтобы его смог корректно воспринимать контроллер гравировальной установки. Для такого преобразования используется программа Inkscape Laserengraver.

Окончательная настройка и подготовка к работе

Изготовив лазерный гравировальный станок своими руками и закачав в его управляющий компьютер необходимое программное обеспечение, не приступайте к работе сразу: оборудование нуждается в окончательной настройке и регулировке. В чем заключается такая регулировка? Прежде всего необходимо убедиться, что максимальные перемещения лазерной головки станка по осям X и Y совпадают со значениями, полученными при преобразовании векторного файла. Кроме того, в зависимости от толщины материала, из которого изготовлено обрабатываемое изделие, надо отрегулировать параметры тока, подаваемого на лазерную головку. Делать это нужно для того, чтобы не прожечь изделие, на поверхности которого требуется выполнить гравировку.

Очень важным и ответственным процессом является точная настройка (юстировка) лазерной головки. Юстировка нужна для того, чтобы отрегулировать мощность и разрешение луча, вырабатываемого лазерной головкой вашего гравера. На дорогих серийных моделях лазерных гравировальных установок юстировка выполняется при помощи дополнительного маломощного лазера, установленного в основную рабочую головку. Однако в самодельных граверах, как правило, используются недорогие лазерные головки, поэтому такой способ точной настройки луча для них не подходит.

Испытайте свой самодельный лазерный гравер сначала на простых рисунках

Достаточно качественная юстировка самодельного лазерного гравера может быть выполнена при помощи светодиода, извлеченного из лазерной указки. Провода светодиода подсоединяются к источнику питания с напряжением 3 В, а сам он фиксируется на рабочем конце штатного лазера. Попеременно включая и регулируя положение лучей, исходящих от тестового светодиода и лазерной головки, добиваются их совмещения в одной точке. Удобство использования светодиода от лазерной указки заключается в том, что юстировка с его помощью может выполняться без риска нанесения вреда как рукам, так и глазам оператора гравировальной установки.

Видеоролик показывает процесс подключения гравера к компьютеру, настройку софта и подготовку станка к работе.

Самодельный миниатюрный лазерный гравер на Arduino Uno

Лазерный гравер в действии и процесс сборки устройства

Материалы и инструменты

Для создания гравера вам понадобятся следующие основные компоненты:

  • Arduino UNO (с USB-кабелем).
  • 2 шаговых двигателя от DVD-приводов.
  • 2 контроллера для шаговых двигателей A4988 и соответствующая плата расширения для Arduino.
  • Лазер мощностью 250 мВт с настраиваемой оптикой.
  • Блок питания (минимум — 12В, 2А).
  • 1 N-канальный полевой транзистор IRFZ44N.

Вот список необходимых инструментов:

  • Паяльник.
  • Дрель.
  • Напильник по металлу.
  • Наждачная бумага.
  • Кусачки.
  • Клеевой пистолет.

Шаг 1. Шаговый двигатель

В нашем проекте понадобится два шаговых двигателя из DVD-приводов. Один нужен для перемещения стола гравера по оси X, а второй — по оси Y. Поискать подходящие приводы можно в нерабочих компьютерах или в местном магазине подержанной электроники. Я нашёл то, что мне было нужно, очень дёшево, именно в таком магазине.

Винты на корпусе DVD-привода

DVD-привод со снятой крышкой

Необходимые нам части DVD-приводов

DVD-приводы нужно разобрать. Последовательность действий по «добыванию» из привода того, что нам нужно, выглядит так:

  • Откручиваем все винты, воспользовавшись отвёрткой с профилем Phillips.
  • Отключаем все кабели.
  • Открываем корпус и откручиваем винты, крепящие шаговый двигатель и соответствующий механизм.
  • Извлекаем двигатель и присоединённый к нему механизм.

В результате в нашем распоряжении окажется два 4-пиновых биполярных шаговых двигателя.

Шаг 2. Изучаем шаговый двигатель

Шаговый двигатель

Шаговый двигатель — это электромеханическое устройство, которое преобразует последовательности электрических импульсов в дискретные угловые перемещения ротора. То есть — ротор такого двигателя может, реагируя на поступающий на него сигнал, выполнить определённое количество шагов. Шаговые двигатели можно сравнить с цифро-аналоговыми преобразователями, превращающими цифровые сигналы от управляющих схем в нечто, имеющее отношение к физическому миру. Такие двигатели применяются в самых разных электронных устройствах. Например — в компьютерной периферии, в приводах дисководов, в робототехнике.

Шаг 3. Подготовка шаговых двигателей

Кабель для подключения шагового двигателя к контроллеру

Кабель для подключения шагового двигателя к контроллеру

Для начала, используя мультиметр в режиме проверки целостности цепи, найдём контакты, подключённые к двум катушкам двигателя — к катушке A, и к катушке B.

Я подготовил 2 пары проводов разного цвета, одну пару для подключения к катушке А, вторую — для подключения к катушке B.

Шаг 4. Сборка стола гравера

Сборка стола гравера

Для сборки подвижного стола гравера я склеил механизмы шаговых двигателей, разместив их перпендикулярно друг другу. Основание стола сделано из ДСП.

Шаг 5. Сборка держателя для лазера

Сборка держателя для лазера

Установка держателя

Держатель для лазера собран из дерева. Модуль лазера крепится к нему кабельной стяжкой.

Шаг 6. Прикрепление лазера к держателю

Лазер, стол гравера и лазер, закреплённый на держателе

В этом проекте используется лазерный модуль мощностью 200-250 мВт (длина волны — 650 нм). Оптическая система этого модуля позволяет сфокусировать лазер на нужном расстоянии.

Для того чтобы обеспечить охлаждение гравера при его длительной работе — можно воспользоваться радиатором. Его можно купить или снять со старой материнской платы.

Шаг 7. Подключение электронных компонентов

Подключение электронных компонентов

Теперь нужно подключить к Arduino плату расширения. К ней надо подключить контроллеры шаговых двигателей, шаговые двигатели, лазер и блок питания.

Шаг 8. Загрузка и установка Benbox Laser Engraver, Arduino IDE и драйвера CH340

Материалы Benbox Laser Engraver

Теперь пришло время загрузить и установить необходимое ПО. В частности, нам нужны следующие программы:

  • Benbox Laser Engraver 3.7.99.
  • Arduino IDE.
  • Драйвер CH340 для Arduino (входит в состав дистрибутива Benbox Laser Engraver).

После установки программного обеспечения нужно перезагрузить компьютер и подключить Arduino к компьютеру по USB.

Шаг 9. Установка прошивки для Arduino Nano

Окно обновления прошивки

Теперь в окне Benbox Laser Engraver нужно нажать на кнопку с изображением молнии (она находится в верхнем ряду кнопок, справа). Далее, в появившемся окне надо выбрать подходящий COM-порт, выбрать устройство (UNO(328p)) и указать путь к .hex-файлу прошивки. Теперь надо нажать на кнопку с галочкой. После успешного завершения прошивки Arduino в заголовке окна появится зелёная галочка.

Читайте также  Рыхлитель почвы ручной своими руками

Шаг 10. Настройка параметров Benbox Laser Engraver

Настройка параметров программы

Теперь нужно настроить параметры гравера. Для этого надо нажать на синюю кнопку меню, которая находится в правом верхнем углу окна программы. Потом, для открытия списка параметров, надо щёлкнуть по кнопке с изображением стрелки, направленной вправо. Далее, надо заполнить список параметров так, как показано на предыдущем рисунке.

После этого надо щёлкнуть по кнопке со стрелкой, направленной влево, и выбрать порт, к которому подключён гравер.

Выбор порта

Шаг 11. Первый сеанс гравировки

Создание простого изображения для проверки работы системы

Начальная точка гравировки (0, 0) отмечена маркером, который выглядит на рисунке как красная дуга. Он находится в левом верхнем углу рабочего поля программы. При проверке правильности работы системы можно нарисовать в рабочем поле какую-нибудь простую фигуру, воспользовавшись инструментами, находящимися в левой части окна программы. После того, как изображение готово, запустить гравировку можно, нажав на зелёную кнопку со стрелкой, расположенную в верхней панели инструментов. Но перед этим надо сфокусировать луч лазера.

Шаг 12. Работа с гравером

Если у вас получилось всё то, о чём мы говорили выше, это значит, что теперь у вас есть собственный лазерный гравер.

Как собрать лазерный гравёр своими руками: способы, материалы, инструкции

Ещё недавно для того, чтобы сделать гравировку на металле или дереве, мастерам приходилось долгое время просиживать за столом с бормашинкой. При этом, если было необходимо выполнить мелкий рисунок, в ход шли увеличительные стёкла, а ведь подобная нагрузка на глаза не проходит бесследно. Но сегодня мастеру достаточно загрузить любое, даже самое сложное, изображение в компьютер и нажать кнопку. Остальную работу выполнит лазерный гравёр. И сегодня поговорим о том, как его изготовить своими руками в домашних условиях.

Устройство лазерного гравёра для домашнего пользования и его принцип работы

Основой лазерного принтера является оптическая система. По своей сути это неоднородные линзы, собранные воедино. Их задача – сфокусировать световой поток от лазерного светодиода в мельчайшую точку, усилив его.

Также нельзя умалять и роль трансмиссионной и контрольной систем. Первая включает в себя сервоприводы, синхронизирующие лазер с заданной программой. Вторые, состоящие из датчиков и вычислительных схем, обеспечивают безошибочную работу систем оборудования.

Механическая часть состоит из основных опорных частей и вспомогательных механизмов, которые составляют устройство самого агрегата. И наконец, охлаждение. Без этой системы кулеров, радиаторов лазер бы моментально перегрелся и сгорел – при работе он очень сильно нагревается.

Изготовление гравёра своими руками в домашних условиях – возможно ли это

По сути, подобная работа не столь сложна, как может показаться на первый взгляд. Существует несколько вариантов, как сделать гравёр своими руками с применением деталей от различной техники, которая может оказаться дома.

К примеру, такое устройство можно собрать на основе приводов DVD, принтера или же использовать для изготовления Ардуино Уно.

Самодельные лазерные гравёры могут быть предназначены для работы по дереву или металлу. Именно на этом параметре мы и остановимся подробнее.

Лазерный гравёр по дереву: необходимые материалы и пошаговая инструкция

Самодельный лазерный гравёр для работы по дереву изготовить довольно просто. Достаточно приложить руки и немного фантазии. Кстати, таким устройством можно будет наносить надписи не только на деревянную, но и на пластиковую или кожаную поверхность, например на ремень.

А для того чтобы было проще, питание на него будет подаваться не от аккумуляторной батареи, а от обычного компьютера через USB-шнур. Хотя если необходимо сделать устройство для гравировки по дереву своими руками портативным, можно использовать обычный Power Bank.

ФОТО: appinformers.com Power Bank можно использовать как АКБ

Для изготовления потребуется:

  • 2 стреляных гильзы калибра 8 мм и укороченная 7,62 мм (стартовый либо газовый пистолет и ТТ);
  • лазерный светодиод (около 250-300 мВт), который можно демонтировать со старого DVD-привода;
  • линза из того же привода;
  • гнездо USB;
  • латунная трубка с внутренним диаметром 10 мм;
  • 3 резистора с общим сопротивлением 30 Ом;
  • резистор на 50 Ом;
  • тонкие провода;
  • кнопка включения.

Конечно же, без паяльника, дрели, бормашинки и любимого термоклея здесь не обойтись. Когда всё необходимое готово, можно приступать к работе. А как её выполнить, будет рассказано в пошаговой инструкции с фотопримерами и детальными объяснениями.

ФОТО: goods.ru Самый используемый инструмент «для всего»

Статья по теме:

Ручной гравёр своими руками: назначение, особенности инструмента, необходимые материалы, подготовка деталей будущей бормашины, подробная пошаговая инструкция с фото и рекомендациями — в нашей публикации.

Пошаговая инструкция по изготовлению лазерного гравёра по дереву своими руками

Перед тем как приступить к работе, следует запомнить – лазерный луч довольно опасен. Если он попадает на роговицу глаза, необходимо немедленно обращаться к врачу. В противном случае последствия могут быть самыми плачевными, вплоть до полной потери зрения.

Подготовка материала корпуса

Для начала необходимо подготовить гильзы, чтобы они были пригодны для изготовления корпуса ручного лазерного гравёра. Для этого нужно взять сверло, хвостовик которого подходит по диаметру к горлышку гильзы от патрона 7,62 мм.

Поджимая плоскогубцами и постоянно увеличивая диаметр, можно полностью выправить гильзу, придав ей форму ровного цилиндра.

ФОТО: youtube.com Гильза должна принять форму ровного цилиндра

После следует проверить размеры. Выправленная гильза должна довольно плотно входить в восьмимиллиметровую. При этом она должна двигаться, что необходимо впоследствии для регулировки.

ФОТО: youtube.com Размеры гильз должны совпасть идеально

Выбор лазерного светодиода: какой подходит

Следует обратить внимание, что привод, из которого извлекается светодиод, должен иметь функцию записи. Именно записывающий лазер можно использовать как гравёр.

Для того чтобы определить, какой из двух подойдёт, нужно подать на них питание. Если свечения нет, значит, это считывающий элемент. Но стоит быть осторожным, чтобы луч при этом не попал в глаза.

ФОТО: youtube.com Необходимо правильно выбрать лазерный светодиод

Следующий шаг – подбор линзы

Линзу можно извлечь из того же привода. Они могут быть двух размеров, при этом подойдёт любая. Более крупная хорошо встанет в расправленную гильзу, ну а маленькой найдётся место позади после удаления капсюля.

ФОТО: youtube.com Линзу можно демонтировать с того же привода

При демонтаже линзы следует быть особенно аккуратным. Если повредить её рабочую поверхность, линза будет непригодна для гравёра, придётся искать новую.

Снять линзу несложно, она просто проклеена по краям. Для демонтажа можно использовать как нож или резачок, так и обычную шлицевую отвёртку. Правда, перед работой её потребуется немного подточить.

ФОТО: youtube.com Линзу нужно демонтировать крайне аккуратно, чтобы не повредить рабочую поверхность

Удаление капсюлей из гильз и последующая сборка

Капсюли выбиваются из гильзы очень просто. Для этого потребуется кернер и круглая насадка от мясорубки. Гильза устанавливается на неё капсюлем вниз, изнутри надставляется кернер, по которому производится пара ударов молотком.

ФОТО: youtube.com Выбить капсюли из гильзы очень просто

Теперь отверстия от выбитых капсюлей требуется рассверлить. Проблема заключается в том, что гильзу в тисках не зажать, она сразу помнётся.

Но выход есть. Гильзу необходимо зажать в патрон дрели или шуруповёрта. Три губки равномерно сожмут и надёжно зафиксируют её. Однако с затяжкой и здесь не стоит перебарщивать, всему есть предел.

ФОТО: youtube.com Гильзу можно зажать в патроне, тогда она не сомнётся

Также можно поступить следующим образом. В патрон дрели или шуруповёрта зажимается сверло, а сама гильза фиксируется при помощи наждачной бумаги.

Однако такой способ опасен, не исключено получение травм, поэтому редакция Homius не рекомендует его использовать.

ФОТО: youtube.com Ещё один способ сверления гильзы

Остаётся поместить светодиод в отверстие, где был капсюль, и зафиксировать его при помощи термоклея, а также зафиксировать линзу во второй гильзе. Луч будет регулироваться вытягиванием гильзы с линзой.

ФОТО: youtube.com Светодиод уже внутри, можно продолжать сборку

Подключение электрической части для подачи питания

Для подключения можно использовать любой питающий порт. В данном случае было выбрано гнездо от отслужившего своё принтера.

Его требуется разобрать и обточить так, чтобы оно плотно встало внутри латунной трубки, после чего припаять к плюсовому контакту сопротивление на 30 Ом.

ФОТО: youtube.com Порт требуется разобрать, сняв металлическую оболочку

ФОТО: youtube.com К плюсовому контакту припаивается сопротивление

Кнопку питания также нужно модернизировать, соединив её контакты сопротивлением 50 Ом. Это позволит получить слабый луч при отпущенной кнопке, чтобы примериться. При нажатии лазер начнёт работать в полную силу.

ФОТО: youtube.com Небольшая модернизация кнопки включения

Что же должно получиться в итоге

После того как в латунной трубке будет размещена и зафиксирована кнопка, можно собрать конструкцию воедино. При этом внешняя часть питающего штекера должна касаться трубки. Это и будет минусовым контактом.

ФОТО: youtube.com Вот такой аккуратный лазерный гравёр из DVD-привода можно изготовить своими руками

Остаётся проверить его в работе. Кстати, он подойдёт и для выпаивания SMD-элементов, если немного убавить мощность луча, двигая гильзу с линзой.

ФОТО: youtube.com Ручной лазерный гравёр работает прекрасно

Более подробно мастер-класс по изготовлению подобного устройства можно увидеть в этом видео.