Чем отличается сварка от пайки

Сварка и пайка 2021

Сварка — это процесс соединения деталей, часто из металла, путем нагревания до степени плавления прикосновений. В отличие от сварки, которая является термической обработкой, а также пайкой, пайка представляет собой способ соединения преимущественно металлических деталей с использованием расплавленного материала с температурой плавления ниже температуры плавления основного материала.

Что такое Сварка?

Сварка представляет собой соединение двух или более одинаковых или разных материалов путем плавления или прессования с добавлением дополнительного материала или без него для получения однородного сварного соединения. В соответствии с методом соединения методов сварки они делятся на две большие группы:

  • Сварка плавлением, сварка материалов в расплавленном состоянии на месте соединения, с дополнительным материалом или без него.
  • Газовая сварка
  • Электрическая сварка
  • Сварка путем прессования материала в твердом или мягком состоянии в месте соединения с помощью давления или удара.
  • Кузнечная сварка
  • Электроустойчивая сварка.

Большинство сварочных процессов были обнаружены в XX веке, но некоторые методы, такие как сварка припоем, известны в старости. Сварка стала неотъемлемой частью навыков кузнецов, ювелиров и производителей пиломатериалов в производстве инструментов, оружия, сосудов, ювелирных изделий и зданий (заборы, двери, мосты, оборудование и т. Д.). Сварка — сложный процесс, и это не легко определить его точно. Термин «сварка» относится к способности материала достигать непрерывного сварного соединения при определенных условиях сварки, что будет отвечать условиям и долговечности свойств. Кроме того, химические свойства металла, размеры деталей, тип дополнительного материала, подготовка сварочного шва, зависят от свариваемости некоторых металлов.

Что такое пайка?

Пайка определяется как процесс соединения, когда основной материал соединяется вместе с использованием дополнительного материала, температура плавления которого не превышает 450 ° C. Основной материал не расплавляется во время процесса связывания. Дополнительный материал обычно расположен между правильно расположенными поверхностями соединения с помощью капилляра. Как и твердая пайка и другие процессы склеивания, мягкая пайка включает в себя несколько областей науки, включая механику, химию и металлургию. Пайка — это простая операция, состоящая из относительного расположения соединительных деталей, смачивания поверхностей расплавленным дополнительным материалом и обеспечения дополнительного охлаждения материала до его засорения. Связь между дополнительным и основным материалом больше, чем адгезия или механическая, хотя они вносят вклад в прочность соединения. Ключевой особенностью соединения является металлургическая связь между дополнительным материалом и основным материалом. Дополнительный материал реагирует с основным материалом и квазиобразованием путем образования интерметаллических соединений. После отверждения соединение удерживается вместе с той же силой притяжения, которая удерживает кусок металла вместе. Многочисленные способы нагрева, доступные для пайки, часто представляют собой конструкторские или инженерные ограничения при выборе лучшего капиллярного соединения. Поскольку эффективное капиллярное соединение требует эффективной передачи тепла от источника тепла, невозможно, например, проложить проволоку диаметром 0,0025 миллиметра в кусок меди весом от 2 до 3 кг с небольшой горелкой. Размер и цена отдельных сборок, необходимое количество и скорость производства будут влиять на выбор метода нагрева. Следует учитывать и другие факторы, включая скорость нагрева, дифференциальный температурный градиент, а также внешние и внутренние скорости охлаждения. Эти факторы сильно различаются в разных методах нагрева, и их влияние на стабильность размеров, деформацию и структуру соединения следует учитывать.

Разница между сваркой и пайкой

Температура плавления дополнительного материала

В случае сварки температура> 450 ° C, ниже или равна температуре плавления основного материала. Пайка представляет собой механический процесс с температурой

Чем отличается пайка от сварки: описание и отличия

Заданный вопрос лежит в сфере технологических процессов — и поэтому сначала потребуется взглянуть на упомянутые техпроцессы поподробнее.

Что есть сварка

Под сваркой понимается технологическая операция (процесс) по получению неразъёмного соединения элементов за счёт созданиями между ними межмолекулярных/межатомных связей при общем/местном нагреве либо пластической деформации (как вариант, допустимо одновременное воздействие факторов). Сварка применима и к металлам/сплавам, и к неметаллическим материалам: керамике, пластмассе и так далее.

Для подвода нужного количества энергии в точку сварки могут применяться разные способы: транзит мощного электротока через свариваемые элементы (сварка электрическая контактная), нагрев дугой (сварка электродуговая), за счёт химреакции горения (сварка газовая), концентрированным излучением/частицами (сварка сфокусированным электромагнитным излучением, лазером, электронным пучком), трением (сюда же относится и сварка ультразвуковая).

Сварка двух элементов может быть произведена посредством диффузионных/перемешивающих процессов того или иного рода при:

  • Нагреве материала в нужной точке до плавления без дополнительного сжатия элементов.
  • При умеренном сжатии и нагреве элементов одновременно.
  • При очень значительном сжатии элементов без подвода нагрева извне.

Что есть пайка

Под пайкой понимается технологическая операция (процесс) по получению неразъёмного соединения элементов посредством введения между соединяемыми поверхностями расплавленного припоя (в качестве такового выступает металл/сплав, температура плавления которого заведомо ниже, нежели чем у материала элементов), завершающаяся охлаждением. Сразу же интересно отметить, что практически под это же определение с минимальными изменениями подпадает распространённая ныне «склейка термопластичным клеем» — однако её именуют именно склейкой, оставляя за пайкой случай металлов/сплавов (см. ГОСТ 17325-79).

Важное значение в пайке имеет флюс — специальное вещество, дополнительно вводимое в контакт с припоем и спаиваемыми поверхностями. Как правило флюс реагирует с окислами металлов на поверхностях припоя/элементов, обнажая «чистые» (неокисленные) слои и дополнительно снижает поверхностное натяжение жидкого припоя.

В общем случае в зону пайки подводится тепло (специальным прибором — паяльником, либо общим нагревом — например, газовой горелкой) до расплавления припоя, но при этом она ниже температуры плавления поверхностей элементов, после чего припой за счёт поверхностных сил (смачивания) растекается по соединяемым поверхностям. После прекращения нагрева припой застывает, формируя соединение. Несколько особняком здесь стоит пайка-сварка: её отличает меньшее количество припоя и характер формируемого шва, из-за чего она более похожа на сварку (в случае разнородных материалов при пайке-сварке кромка более легкоплавкого элемента может оплавиться).

Итоги

Как хорошо видно из вышеприведённых описаний-определений, оба технологических процесса достаточно похожи и используются для соединения элементов изделия в одно целое, причём обрабатываемыми материалами могут выступать как металлы/сплавы, так и иные вещества, а сами процессы типично производится при повышении температуры.

Тем не менее, имеются следующие важные отличия:

  1. Существующее определение пайки подразумевает в основном использование металлов/сплавов, а спектр материалов для сварки много шире (например, пластмассы).
  2. При пайке подразумевается изначальное существование значительного зазора между элементами, который затем будет заполнен более легкоплавким припоем.
  3. Для пайки вообще более характерно использование дополнительного специального вещества — флюса, реагирующего с поверхностями и припоем (в сварке такими исключениями, использующими флюс, будут дуговая сварка с обмазанным электродом и сварка под дополнительным слоем флюса).
  4. При пайке так или иначе в зазор между требующими соединения поверхностями дополнительно вводится более легкоплавкий материал — припой (напрямую — или in situ, из флюса).
  5. При пайке соединяемые материалы не плавятся (исключение составляет пайка-сварка, когда оплавляется кромка одного из элементов, подвергаемых такой пайке).

Чем отличается пайка от сварки: описание и отличия

Сварка

Для подвода нужного количества энергии в точку сварки могут применяться разные способы: транзит мощного электротока через свариваемые элементы (сварка электрическая контактная), нагрев дугой (сварка электродуговая), за счёт химреакции горения (сварка газовая), концентрированным излучением/частицами (сварка сфокусированным электромагнитным излучением, лазером, электронным пучком), трением (сюда же относится и сварка ультразвуковая).

Читайте также  Мини точечная сварка своими руками

Процесс сварки

Сварка двух элементов может быть произведена посредством диффузионных/перемешивающих процессов того или иного рода при:

  • Нагреве материала в нужной точке до плавления без дополнительного сжатия элементов.
  • При умеренном сжатии и нагреве элементов одновременно.
  • При очень значительном сжатии элементов без подвода нагрева извне.

Что есть пайка

Под пайкой понимается технологическая операция (процесс) по получению неразъёмного соединения элементов посредством введения между соединяемыми поверхностями расплавленного припоя (в качестве такового выступает металл/сплав, температура плавления которого заведомо ниже, нежели чем у материала элементов), завершающаяся охлаждением. Сразу же интересно отметить, что практически под это же определение с минимальными изменениями подпадает распространённая ныне «склейка термопластичным клеем» — однако её именуют именно склейкой, оставляя за пайкой случай металлов/сплавов (см. ГОСТ 17325-79).

Пайка

Важное значение в пайке имеет флюс — специальное вещество, дополнительно вводимое в контакт с припоем и спаиваемыми поверхностями. Как правило флюс реагирует с окислами металлов на поверхностях припоя/элементов, обнажая «чистые» (неокисленные) слои и дополнительно снижает поверхностное натяжение жидкого припоя.

Процесс пайки

В общем случае в зону пайки подводится тепло (специальным прибором — паяльником, либо общим нагревом — например, газовой горелкой) до расплавления припоя, но при этом она ниже температуры плавления поверхностей элементов, после чего припой за счёт поверхностных сил (смачивания) растекается по соединяемым поверхностям. После прекращения нагрева припой застывает, формируя соединение. Несколько особняком здесь стоит пайка-сварка: её отличает меньшее количество припоя и характер формируемого шва, из-за чего она более похожа на сварку (в случае разнородных материалов при пайке-сварке кромка более легкоплавкого элемента может оплавиться).

Паяльник

Итоги

Как хорошо видно из вышеприведённых описаний-определений, оба технологических процесса достаточно похожи и используются для соединения элементов изделия в одно целое, причём обрабатываемыми материалами могут выступать как металлы/сплавы, так и иные вещества, а сами процессы типично производится при повышении температуры.

Тем не менее, имеются следующие важные отличия:

  1. Существующее определение пайки подразумевает в основном использование металлов/сплавов, а спектр материалов для сварки много шире (например, пластмассы).
  2. При пайке подразумевается изначальное существование значительного зазора между элементами, который затем будет заполнен более легкоплавким припоем.
  3. Для пайки вообще более характерно использование дополнительного специального вещества — флюса, реагирующего с поверхностями и припоем (в сварке такими исключениями, использующими флюс, будут дуговая сварка с обмазанным электродом и сварка под дополнительным слоем флюса).
  4. При пайке так или иначе в зазор между требующими соединения поверхностями дополнительно вводится более легкоплавкий материал — припой (напрямую — или in situ, из флюса).
  5. При пайке соединяемые материалы не плавятся (исключение составляет пайка-сварка, когда оплавляется кромка одного из элементов, подвергаемых такой пайке).

Скрутка, пайка, сварка или клеммы — что выбрать? Распространённые способы соединения проводников

Как соединить две или несколько токопроводящие жилы между собой, каждый выбирает сам. Но не стоит забывать, что правильное соединение и надёжный контакт между соприкасающимися поверхностями — залог безопасной работы электросети и практически полное отсутствие рисков короткого замыкания, влекущего за собой нагрев проводника или возгорание изоляции.

Для того чтобы грамотно соединить провода, нужно помнить о нескольких важных пунктах:

  • сечение,
  • материал исполнения (медь, алюминий и т. д.),
  • рабочая среда (улица, помещение, производство и др.),
  • набор инструментов,
  • и главное — «Правила устройства электроустановок» — нормативный документ, включающий общие требования к проводникам и их соединениям. Необходим для работы электрикам и электромонтажникам.

Распространённые виды соединений

Клеммные колодки

Один из видов электроустановочных изделий для быстрого и относительно простого соединения проводов. Представлены в виде корпуса из диэлектрических материалов (либо безкорпусные) с несколькими металлическими контактами, к которым крепится провод. Могут оснащаться механическими, пружинными или болтовыми фиксаторами. Максимально допустимый температурный режим работы — до +300 °С и только для керамических клеммных колодок.

Подходят для использования в распределительных коробках, модулях, различных приборах освещения и блоках электропитания.

Преимуществом клеммных колодок является их простота использования. Недостаток — отсутствие возможности совмещать проводники из разных металлов.

Клеммные зажимы Wago

Подходят для экспресс-фиксации токопроводящей жилы. В основе изделия — рычажный зажимной механизм с предохранением фиксируемого кабеля от повреждения. Доступны в двух вариантах исполнения: разъёмные или многоразовые и неразъёмные.

Область применения: электророзетки общего и бытового назначения, а также системы освещения. В других областях применение не рекомендовано ввиду возможного оплавления клеммника и нарушения контакта между соединёнными проводами.

Одно из преимуществ соединения — простота. Способ не требует наличия специальных инструментов или аксессуаров, а также специфических знаний и навыков. Отличается большой площадью контакта и высокой силой зажима. Недостаток — плавятся при чрезмерном нагреве.

Соединительные изолирующие зажимы или СИЗ

Изделия представляют собой пластиковый колпачок с фиксирующей пружиной. Выполняются из негорючих материалов и отличаются низкой себестоимостью. Удобны для маркировки, так как поставляются в разном цветовом исполнении.

Область применения: монтажные коробки, осветительные приборы и оборудование.

Преимущества: низкая стоимость, простота применения, цветовое разнообразие, многократное использование. Недостатки метода: нельзя соединять между собой медь и алюминий, относительно слабая фиксация контактирующих поверхностей.

Гильзы для опрессовки

Соединительные обжимные гильзы — это полые алюминиевые либо медные трубки, в которые помещаются соединяемые провода. В отдельных случаях применяется как альтернатива сварке или пайке. Благодаря комбинированному варианту исполнения алюмомедные гильзы подходят для соединения разных типов кабеля (медного и алюминиевого).

Для создания надёжного контакта метод требует наличия специализированного инструмента — обжимных клещей. Обычные плоскогубцы для этой цели не подойдут, так как не имеют необходимых диаметров для опрессовки. Рекомендовано использование термоусадочных трубок для защиты гильзы от внешних воздействий.

Сфера применения: обжимные гильзы идеально подходят для организации безопасных контактов в розетках.

Преимущества: опрессовка — долговечный способ соединения, возможность коммутации медных и алюминиевых проводов между собой. Недостатки: относится к одноразовым/неразъёмным, требуют наличие специального инструмента.

Зажим «орех»

Удобный тип соединения проводников. Отличается простотой конструкции — 2 металлических пластины с местом под соединение и 4 зажимных винта по углам. Соединительные пластины защищаются карболитовой оболочкой, благодаря которой способ и получил своё название.

Область применения: в основном в распределительных щитах многоквартирных домов.

Преимущества: высокая степень надёжности, не требует разрыва проводника, к которому необходимо присоединить дополнительный провод, допустимо соединять между собой медь и алюминий. Недостатки: из-за размеров не подходит для использования в распределительных коробках, где требуется разместить много контактов, низкая степень пыле- и влагозащиты.

Болтовое соединение

Способ прост и не отличается эстетическими изысками. Однако надёжен и долговечен. Используется болт, 3 шайбы и гайка. Для создания контактной поверхности необходимо надеть первую шайбу на резьбу болта, прикрутить одну из токопроводящих жил, затем надеть вторую шайбу, прикрутить второй проводник, после чего надеть 3 шайбу и прочно зафиксировать гайкой.

Область применения: хорошо подходит в качестве временного соединения «на скорую руку». Не рекомендован к длительной эксплуатации, особенно в местах, где отсутствует возможность постоянного контроля.

Преимущества: допустимо соединение проводов из разных материалов, быстрота. Недостатки: металлические шайбы могут сильно нагреваться, что создаёт риск возникновения пожара, полное отсутствие пыле- и влагозащиты.

Читайте также  Сварка чугуна электродом в домашних условиях

Сварка

Метод требует наличия профессиональных навыков работы со сварочными аппаратами и ряд специализированных инструментов: пассатижи, бокорезы, флюс (для сварки алюминия) и защитные средства для глаз.

Область применения: чаще всего используется на производстве.

Преимущества: крайне высокая степень надёжности ввиду сплавления контактирующих поверхностей. Недостатки: не подходит для сварки между собой меди и алюминия.

Пайка

Область применения: радио- и микроэлектроника (для присоединения проводов на плату). Пайка также применяется для скрепления между собой различных проводников.

Преимущества: допустимо соединение между собой меди и алюминия. Существенный недостаток — слабое место коммутации. Разрыв в месте пайки может произойти даже при слабом воздействии. Также необходим набор обязательных аксессуаров: паяльник либо паяльная станция и припой.

Скрутка

Один из самых популярных и примитивных способов соединения. Используется повсеместно и с любыми видами кабельно-проводниковой продукции. Относительно недавно включен в разряд запрещённых (прямого запрета в ПУЭ на это нет, но и в список разрешённых соединений скрутка не входит). Изолирование контактирующих поверхностей при скрутке осуществляется с помощью изоленты или с применением термоусадочных трубок.

В зависимости от многих факторов, таких как профессиональный навык, усилие при скручивании, применение зажимного инструмента, а также видов проводников может быть как надёжным, так и нет. Подобное соединение связано с определённым риском, так как со временем скрутка теряет свои прижимные свойства, вследствие чего ослабляется контакт между проводниками, что приводит к повышению температуры в месте соединения и возгоранию.

Применение: скрутка больше подходит для организации временного соединения. Для исключения возможных рисков рекомендовано воспользоваться одним из выше представленных способов.

Преимущества: быстрота и простота применения, возможность соединения меди и алюминия. Недостатки: высокий риск возникновения пожара, быстрое окисление места соединения и, как следствие, ухудшение контакта.

Реферат – Пайка металло

Область применения пайки металлов, ее преимущества и недостатки. Методы паяния нихрома, титана, стали и других материалов. Выбор припоев и флюсов, от которых зависит качество паяного шва.

  1. Разновидности
  2. Технология пайки металлов
  3. Ваш комментарий к ответу:
  4. Ваш комментарий к ответу:
  5. Адгезия расплавов и пайка материалов. Сборник научных трудов. Вып. 41
  6. Бессвинцовые технологии
  7. Сравнение со сваркой
  8. 2.3 Контактно-реактивная пайка
  9. Обзор видов
  10. Низкотемпературная
  11. Высокотемпературная
  12. 2 .4 Реактивно-флюсовая пайка
  13. Стандарты
  14. Меры безопасности
  15. Пошаговая техника пайки проводов
  16. Что понадобится?
  17. См. также
  18. См. также
  19. См. также
  20. Пошаговая методика пайки радиодеталей на плату
  21. Возможные проблемы при пайке
  22. Работа с медью
  23. Написать отзыв
  24. Литература
  25. Видео по теме

Разновидности

Пайка бывает низкотемпературная (до 450 °C) и высокотемпературная. Соответственно припои бывают легкоплавкие и тугоплавкие. Для низкотемпературной пайки используют в основном электрический нагрев, для высокотемпературной — в основном нагрев горелкой. В качестве припоя используют сплавы оловянно-свинцовые (Sn 90 % Pb 10 % c t° пл. 220 °C), оловянно-серебряные (Ag 72 % с t° пл. 779 °C), медно-цинковые (Cu 48 % Zn остальное с t° пл. 865 °C), галлиевые (t° пл.

50°С), висмутовые (сплав Вуда с t° пл. 70 °C, сплав Розе с t° пл. 96 °C) и т. д.

Пайка является высокопроизводительным процессом, обеспечивает надёжное электрическое соединение, позволяет соединять разнородные материалы (в различной комбинации металлы и неметаллы), отсутствие значительных температурных короблений (по сравнению со сваркой). Паяные соединения допускают многократное разъединение и соединение соединяемых деталей (в отличие от сварки). К недостаткам можно отнести относительно невысокую механическую прочность.

Исходя из физико-химической природы процесса, пайку можно определить следующим образом. Процесс соединения металлов в твёрдом состоянии путём введения в зазор припоя, взаимодействующего с основным металлом и образующего жидкую металлическую прослойку, кристаллизация которой приводит к образованию паяного шва. Пайка подразделяется на капиллярную, диффузионную, контактно-реакционную, реакционно-флюсовую и пайку-сварку. В свою очередь, капиллярная подразделяется на горизонтальную и вертикальную. Диффузионная — на атомно-диффузионную и реакционно-диффузионную. Контактно-реакционная — с образованием эвтектики и с образованием твёрдого раствора. Реакционно-флюсовая — без припоя и с припоем. Пайка-сварка — без оплавления и с оплавлением. Анализируя сущность физико-химических процессов, протекающих на границе основной металл — расплав припоя (при формировании соединения в существующих видах пайки), можно видеть, что различия между капиллярной пайкой, диффузионной пайкой и пайкой-сваркой не носят принципиального характера. Капиллярность является общим признаком пайки. Отличительным признаком диффузионной пайки является длительная выдержка при температуре пайки и изотермическая кристаллизация металла шва в процессе пайки. Других характерных признаков этот метод не имеет, основное назначение его — повысить температуру распая шва и прочность паяного соединения. Диффузионная пайка может быть развитием любого вида пайки, в том числе капиллярной, реакционно-флюсовой или контактно-реакционной. В последнем случае диффузионная пайка возможна, если второй металл взаимодействующей пары вводится в виде прослойки между соединяемыми металлами. При реакционно-флюсовой пайке происходит совмещение процессов вытеснение из флюса металла, служащего припоем, и его взаимодействия с основным металлом. Наконец, пайка-сварка отличается от других методов пайки количеством вводимого припоя и характером формирования шва, делающим этот метод пайки похожим на сварку плавлением. При соединении разнородных металлов при пайке-сварке возможно оплавление кромки одной из деталей, изготовленной из более легкоплавкого металла.

Технология пайки металлов

Технология пайки металлов протекает в следующем порядке:

  1. Вначале тщательно зачищаются соединяемые поверхности деталей. Снимается фаска;
  2. Наносится тонким слоем флюс. Какой наносить флюс зависит от свойств металла, который будут паять. Для лучшего распределения флюса по поверхности, необходимо прокрутить соединяемые детали. Или же поверхность подвергают лужению;
  3. Затем горелкой разогревается заготовка в определенном радиусе от места соединения. Для более качественной пайки место соединения прогревается до температуры, которая значительно выше температуры плавления припоя;
  4. На разогретое место соединения присоединяют припой, который быстро плавится и заполняет зазор соединяемых деталей. Некоторые виды пайки включают в себя лужение зачищенной поверхности и последующее соединение и прогрев;
  5. После пайки остывание должно происходить естественным путем. Иначе качество соединения может пострадать.

Технология пайки металлов без припоя применяется при соединении титана и меди. Используется явление контактного плавления. Учитывая, что плавление меди происходит при температуре 1083 градусов Цельсия, а титана 1725 градусов Цельсия, то при плотном соединении и нагреве до 900 градусов Цельсия, имеющийся зазор заполняется расплавом в месте контакта. Происходит процесс диффузии металлов.

Пайка находит свое применение в соединении труб теплообменников, в холодильных установках, системах, передающие разные жидкости и газы и др.

Технология сварки-пайки металлоконструкций из оцинкованной стали

Сварка — пайка — технологический процесс, основанный на вводе в основной металл низкого содержания тепла, что приводит к расплавлению только присадочного материала.

Возрастающие требования к повышению стойкости к кор­розии ведут к применению во многих отраслях материалов с предварительно нанесенными покрытиями. Среди различных возможностей защитить сталь от коррозии цинк приобретает особое значение благодаря своим антикоррозионным каче­ствам, с одной стороны, и его низкой цены — с другой.

Нанесенный на основной материал слой цинка составля­ет в зависимости от метода производства от 1 до 20 мкм. Большое количество оцинкованных деталей применяется в автомобилестроении, строительном хозяйстве, в вентиляци­онной и кондиционерной технике, в бытовой технике и т. п.

Благодаря катодной защите цинк имеет большое значение для защиты стали от коррозии. Если происходит поврежде­ние защитного слоя цинка, то цинковое покрытие влияет на железо катодной защитой. Это влияет также на расстоянии 1 — 2 мм на непокрытую поверхность. Благодаря дистанцион­ному влиянию катодной защиты цинка защищаются как неоцинкованные кромки срезов листов, так и микротрещины, ко­торые возникают вследствие холодной обработки давлением, а также окружение сварочного шва, в котором испаряется цинк. Таким же образом на основании катодной защиты исключает­ся подпленочная коррозия цинкового слоя кромок среза.

Читайте также  Выбор электродов для сварки инвертором

Цинк начинает плавиться при

906 °С испа­ряться. Эти качества неблагоприятно влияют на сварочный про­цесс, так как зажигание сварочной дуги сопровождается испа­рением цинка. Испарение цинка и оксидов может привести к образованию пор, трещин, дефектам сварочных соединений и нестабильной сварочной дуге. Поэтому благоприятнее для оцин­кованных деталей, если устанавливается меньше тепла. Аль­тернатива при сварке — пайке оцинкованных листов в среде защитного газа — это применение медесодержащей присадоч­ной проволоки.

Особенно известны проволоки медно-кремниевые (Си SI3) и алюминиево-бронзовые. При использовании этих проволок можно назвать следующие преимущества:

  • нет коррозии сварочного шва;
  • минимальное разбрызгивание;
  • малое выгорание покрытия;
  • малое тепловложение;
  • простая последующая обработка шва;
  • катодная защита основного материала в непосредствен­ной области шва.

Эти присадочные материалы благодаря высокому содер­жанию меди имеют относительно невысокую точку плавле­ния (в зависимости от состава сплава — от 950 до 1080 °С). Основной материал не плавится, это значит, что соединение соответствует скорее пайке. Отсюда происходит также обо­значение «Сварка — пайка, или МИГ -пайка». Защитный газ рекомендуется, как правило, аргон.

Присадочные материалы

Для сварки — пайки оцинкованных листов рекомендуются следующие медные сплавы:

CuSi3; CuSi2Mn; CuA18

В практическом применении присадочные материалы типа CuSi3 используются наиболее часто. Их существенное пре­имущество состоит в небольшой прочности, которая облег­чает последующую механическую обработку. Текучесть при­садочного материала определяется значительным образом благодаря содержанию кремния. При повышающемся содер­жании кремния плавление становится вязким, поэтому нуж­но обращать внимание на жесткий допуск в содержании ле­гирующих добавок в сплаве.

Присадочный материал типа CuSi2Mn используют также для цинковых покрытий. Дополнительное содержание 1% марганца в проволоке повышает жесткость. По этой причине ее механическая обработка труднее, чем при других медных сплавах. Эта проволока применяется прежде всего там, где не требуется последующая механическая обработка. Свароч­ный присадочный материал типа СиА18 используется преж­де всего для стали с алюминиевым покрытием.

При процессе сварки — пайки используется преимуще­ственно управляемый переход материала в шов, следова­тельно, импульсная сварочная дуга. В некоторых случаях при­менения, специально при толстых слоях цинка от 15 мкм, большое количество испарений может вести к нестабильно­сти процесса пайки или сварки. Поэтому удобнее в случаях такого типа применять короткую сварочную дугу, которая мо­жет держаться стабильнее. В этом случае предъявляются вы­сокие требования к источнику питания и его характеристике регулировки.

В среде богатого аргоном защитного газа посредством надлежащего выбора параметров основного и импульсного тока достигается управляемый, без короткого замыкания пе­реход материала в шов (рис.1).

Переменная форма импульса при сварке — пайке (Iknt-сила тока, при которой применяется струйная дуга, IM — ус­редненная сила тока).

При оптимальном выборе параметров капля присадочного материала отрывается от проволочного электрода по импуль­су. В результате процесс почти лишен брызг. Исследования показали, что различные присадочные материалы и защит­ные газы требуют различной формы импульса. Это привело к отдельной для каждого присадочного материала «срезан­ной» по массе форме импульса. Особенно это действует для бронзовой и медной проволок.

Чтобы в тонких листах испарение цинка оставалось как можно меньше, нужно вести процесс при небольшой силе тока. Поэтому главное требование состоит в том, чтобы ис­точник тока в нижней области мощности обеспечивал осо­бенно стабильную дугу. Низко устанавливаемая сила основ­ного тока при этом так же важна, как и быстро реагирующее регулирование длины дуги, чтобы длина дуги могла держать­ся короткое время. Следствие — небольшой нагрев основно­го материала и уменьшение количества испарения цинка. Как результат обоих эффектов — встречается небольшое количе­ство пор (рис. 2).

Это положительно влияет как при последующей обработ­ке шва шлифовкой, так и при повышенном показателе проч­ности соединения пайкой.

Рис. 2. Угловой шов при импульсной сварочной дуге (толщина листа 1,5 мм)

Режим синержик

Хорошего результата пайки МИГ оцинкованных листов можно достигнуть только при помощи источника питания с достаточно богатым уровнем свободы в выборе параметров. Благодаря множеству бесступенчато устанавливаемых пара­метров (приблизительно тридцать параметров) можно без проблем улучшить отрыв капли при сварке импульсной ду­гой или использовать короткое замыкание при сварке корот­кой дугой для большого количества присадочных материа­лов. Эти дополнительные параметры усложняют обслужива­ние источника питания и ограничивали бы из-за этого круг пользователей лишь экспертами.

При помощи так называемого режима синержик (цифровое управление) с запрограммированными параметрами для каждой комбинации проволоки и газа этот процесс очень прост в обслуживании для пользователя.

Производитель сварочных аппаратов принимает на себя задачу оптимизации параметров для многих различных ос­новных и присадочных материалов, а также защитных газов. Этот научно обоснованный результат записывается в элект­ронном запоминающем устройстве в форме банка данных. Пользователь получает выбор параметров для любого при­садочного материала прямо в источнике питания. Встроен­ный микропроцессор заботится о бесступенчатом выборе мощности в диапазоне от минимума до максимума.

Подача проволоки

В сравнении со стандартными проволоками бронзовые проволоки очень мягкие. Поэтому предъявляются особые тре­бования к механизму подачи проволоки. Подача присадочной проволоки должна осуществляться свободно, без трения. 4-роликовый привод с задействованными подающими роли­ками передает сам при небольшой силе прижима достаточ­ную силу для подачи проволоки. Обычно используются гладкие ролики с полукруглой канавкой. Чтобы удерживать неболь­шое сопротивление трения в шланговом пакете, нужно исполь­зовать тефлоновый или пластмассовый канал. Точное вхож­дение проволоки в контактный наконечник — следующая ос­новная предпосылка для бесперебойной подачи проволоки.

Точно подобранный по размеру контактный наконечник в горелке обеспечивает надежный контакт для передачи тока на бронзовую проволоку.

Примеры применения сварки — пайки

Процесс сварки — пайки может применяться как для неле­гированных и низколегированных, так и для нержавеющих сталей. Главным образом этот метод используется для ста­лей с оцинкованной поверхностью. Незначительное выгора­ние слоя как в непосредственной области шва, так и на об­ратной стороне обусловлено малым тепловложением и низ­кой температурой плавления присадочного материала.

Рис. 3. Примеры применения пайки МИГ в автомобильной промышлен­ности и смежных отраслях: элемент топливопровода, дверная петля

Для сварки — пайки подходят все виды сварочных швов и сварочные позиции, которые известны для сварки в среде защитного газа. Как вертикальные швы (снизу вверх и сверху вниз), так и потолочные позиции выполняются безукоризненно. Скорость сварки при пайке МИГ идентична сварке МАГ (до 100 см/мин).

Множество практических применений процесса пайки МИГ известны в автомобильной промышленности и смежных от­раслях. Примеры показаны на рис. 3.

Возможно применение сварки — пайки и для более прочных материалов, таких как стали, например, велосипедные рамы.

Особенность применения сварки — пайки состоит в том, что при обычной сварке металла в среде защитного газа ко­роткой дугой сварочный шов выпуклый. Поэтому даются ог­раничения на длительность прочности. Пайка твердым при­поем может вызвать коробление трубы. Процесс сварки — пайки делает возможным и то и другое: вогнутый шов и не­большое тепловложение в металл.

Рис. 4. Велосипедная рама, изготовленная методом сварки-пайки на работе