Влияние титана на свойства стали

Влияние химического состава на механические свойства стали

Каждый химический элемент, входящий в состав стали, по-своему влияет на ее механические свойства – улучшает или ухудшает.

Углерод (С), являющийся обязательным элементом и находящимся в стали обычно в виде химического соединения Fe3C (карбид железа), с увеличением его содержания до 1,2% повышает твердость, прочность и упругость стали и уменьшает вязкость и способность к свариваемости. При этом также ухудшаются обрабатываемость и свариваемость.

Кремний (Si) считается полезной примесью, и вводится в качестве активного раскислителя. Как правило, он содержится в стали в небольшом количестве (в пределах до 0,4%) и заметного влияния на ее свойства не оказывает. Но при содержании кремния более 2% сталь становится хрупкой и при ковке разрушается.

Марганец (Mn) содержится в обыкновенной углеродистой стали в небольшом количестве (0,3-0,8%) и серьезного влияния на ее свойства не оказывает. Марганец уменьшает вредное влияние кислорода и серы, повышает твердость и прочность стали, ее режущие свойства, увеличивает прокаливаемость, но снижает стойкость к ударным нагрузкам.

Сера (S) и фосфор (Р) являются вредными примесями. Их содержание даже в незначительных количествах оказывает вредное влияние на механические свойства стали. Содержание в стали более 0,045% серы делает сталь красноломкой, т.е. такой, которая при ковке в нагретом состоянии дает трещины. От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды (MnS). Содержание в стали более 0,045% фосфора, делает сталь хладноломкой, т.е. легко ломающейся в холодном состоянии. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

Ниобий (Nb) улучшает кислостойкость стали и способствует уменьшению коррозии в сварных конструкциях.

Титан (Тi) повышает прочность, плотность и пластичность стали, улучшает обрабатываемость и сопротивление коррозии. Повышает прокаливаемость стали при малых содержаниях и понижает при больших.

Хром (Cr) повышает прочность, закаливаемость и жаростойкость, режущие свойства и стойкость на истирание, но снижает вязкость и теплопроводность стали. Содержание большого количества хрома (в обычных сортах стали доходит до 2%, а в специальных — до 25%) делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Молибден (Mo) повышает прочностные характеристики стали, увеличивает твердость, красностойкость, антикоррозионные свойства. Делает ее теплоустойчивой, увеличивает несущую способность конструкций при ударных нагрузках и высоких температурах. Затрудняет сварку, так как активно окисляется и выгорает.

Никель (Ni) увеличивает вязкость, прочность и упругость, но несколько снижает теплопроводность стали. Никелевые стали хорошо куются. Значительное содержание никеля делает сталь немагнитной, коррозионностойкой и жаропрочной.

Вольфрам (W) образуя в стали твердые химические соединения – карбиды, резко увеличивает твердость и красностойкость. Увеличивает работоспособность стали при высоких температурах, ее прокаливаемость, повышает сопротивление стали к коррозии и истиранию, уменьшает свариваемость.

Ванадий (V) обеспечивает мелкозернистость стали, повышает твердость и прочность. Увеличивает плотность стали, так как является хорошим раскислителем. Снижает чувствительность стали к перегреву и улучшает свариваемость.

Кобальт (Co) повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Алюминий (Аl) является активным раскислителем. Делает сталь мелкозернистой, однородной по химическому составу, предотвращает старение, улучшает штампуемость, повышает твердость и прочность, увеличивает сопротивление окислению при высоких температурах.

Медь (Cu) влияет на повышение коррозионной стойкости, предела текучести и прокаливаемости. На свариваемость не влияет.

Для всестороннего понимания и анализа процессов, происходящих при легировании и деформировании сталей, важную роль играет знание зависимостей между химическим составом и механическими свойствами.

Целью настоящих исследований является изучение комплексного влияния химического состава на предел текучести σТ арматурной стали класса А500С.

В течение сентября и октября текущего года в Лаборатории испытаний строительных материалов и конструкций ГБУ «ЦЭИИС» проводились испытания образцов арматурных стержней диаметром от Ø16 до Ø36. Были выполнены более 30 параллельных испытаний. При этом для одной и той же пробы данного типоразмера арматурных стержней определяли фактическую массовую долю химических элементов с помощью оптико-эмиссионного спектрометра PMI-MASTER SORT (рис.1) и механические свойства стали при помощи испытательной машины ИР-1000М-авто (рис.2).

Рис.1 — Испытание арматурного стержня для определения химического состава стали.

Рис.2 — Испытания арматурной стали на растяжение.

Для обеспечения достоверности статистических выводов и содержательной интерпретации результатов исследований сначала определили необходимый объем выборки, т.е. минимальное количество параллельных испытаний. Так как в данном случае испытания проводятся для оценки математического ожидания, то при нормальном распределении исследуемой величины минимально необходимый объем испытаний можно найти из соотношения:

где υ – выборочный коэффициент вариации,

tα,k – коэффициент Стьюдента,

α=1-P – уровень значимости (Р — доверительная вероятность),

k = n-1 – число степеней свободы,

ΔМ – максимальная относительная ошибка (допуск) при оценке математического ожидания в долях математического ожидания (ΔМ = γ*δМ, где γ — генеральный коэффициент вариации, δМ – максимальная ошибка при оценке математического ожидания в долях среднеквадратического отклонения).

Как правило, генеральный коэффициент вариации γ неизвестен, и его заменяют выборочным коэффициентом вариации υ, для определения которого нами была проведена серия из десяти предварительных испытаний.

По результатам проведенных испытаний и выполненных расчетов при доверительной вероятности Р=0,95 получен необходимый объем выборки, равной n=26. Фактическое количество испытаний, как было сказано выше, составило 36.

Массив данных, полученных по результатам проведенных параллельных испытаний, был обработан с помощью многофакторного корреляционного анализа.

Уравнение множественной регрессии может быть представлено в виде:

Y = f (β, X) + ε,

где X=(X1, X2,…, Xm) – вектор независимых (исходных) переменных; β – вектор параметров (подлежащих определению); ε – случайная ошибка (отклонение); Y – зависимая (расчетная) переменная.

Разработка множественной корреляционной модели всегда сопряжена с отбором существенных факторов, оказывающих наибольшее влияние на признак-результат. В нашем случае из дальнейшего рассмотрения были исключены три элемента (Аl, Тi, W) по причине их низкой массовой доли (

Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter

Влияние химических элементов на свойства стали.

Каталог
Наш Instagram

Влияние хим. элементов на свойства стали.

Условные обозначения химических элементов:

хром ( Cr ) — Х
никель ( Ni ) — Н
молибден ( Mo ) — М
титан ( Ti ) — Т
медь ( Cu ) — Д
ванадий ( V ) — Ф
вольфрам ( W ) — В
азот ( N ) — А
алюминий ( Аl ) — Ю
бериллий ( Be ) — Л
бор ( B ) — Р
висмут ( Вi ) — Ви
галлий ( Ga ) — Гл
иридий ( Ir ) — И
кадмий ( Cd ) — Кд
кобальт ( Co ) — К
кремний ( Si ) — C
магний ( Mg ) — Ш
марганец ( Mn ) — Г
свинец ( Pb ) — АС
ниобий ( Nb) — Б
селен ( Se ) — Е
углерод ( C ) — У
фосфор ( P ) — П
цирконий ( Zr ) — Ц

ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА

Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.

Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)

Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).

Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ

Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.

Читайте также  Температура плавления стали ст3

Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.

Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.

Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.

Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.

Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.

Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.

Алюминий (Ю) — повышает жаростойкость и окалиностойкость.

Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.

Церий — повышает прочность и особенно пластичность.

Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.

Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.

Всё, что необходимо знать о металле ТИТАН (Ti)…

-Титан обладает высокой прочностью, хорошей коррозионной стойкостью и при этом имеет сравнительно небольшую массу, что делает его применение незаменимым в областях, где важны хорошие механические свойства изделий одновременно с их массой. На странице представлено описание данного металла: физические, химические свойства, области применения, марки и его сплавов, виды продукции.

Основные сведения:
-Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Данный материал сочетает легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

История открытия:
-Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана:
-В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа. Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления. По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью. Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает. Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности. Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником. Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Физические и механические свойства:

Химические свойства:

Марки титана и сплавов:
-Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св. В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо. Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С. Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С. Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий. Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С. Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.

Достоинства / недостатки:
— Достоинства:
-малая плотность (4500 кг/м3) способствует уменьшению массы выпускаемых изделий;
-высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые -сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
-необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности -тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
-удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
— Недостатки:
-высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
-активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, -составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
-трудности вовлечения в производство титановых отходов;
-плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
-высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
-плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
-большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

Читайте также  Как узнать марку стали в домашних условиях

Области применения:
-Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах. По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии. Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях. Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж. Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести. Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении. Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла. Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.

-Удачной Вам эксплуатации и спасибо за внимание! Надеюсь, что помог Вам!
-С уважением DrPavlov.

Титан против стали: в чем разница?

Что такое сталь?

Сталь создается путем добавления углерода к элементарному железу. Этот процесс увеличивает твердость, прочность и устойчивость к ударам, коррозии и температуре. Сталь имеет широкий спектр сплавов, в состав которых входят легирующие элементы, такие как цинк, хром, молибден и кремний. Эти элементы улучшают способность стали противостоять коррозии, поэтому ее чаще всего называют нержавеющей сталью. Количество хрома, добавленного в сталь, определяет ее устойчивость к коррозии. Трудно обобщить свойства стали, поскольку она существует во многих типах и калибрах.

В частности, большинство сплавов стали плотные и твердые, но их все же можно обрабатывать. Сталь также поддается термической обработке, что придает ей разные свойства в зависимости от процесса и типа стали. Кроме того, сталь является отличным проводником как тепла, так и электричества. Некоторые образцы стали подвержены ржавчине из-за наличия железа. Однако эта проблема решается добавлением хрома для изготовления нержавеющей стали.

Что такое титан?

Титан — четвертый по распространенности металл на Земле. Однако титан в элементарной форме или в высокой концентрации встречается нечасто. Кроме того, титан очень трудно очистить, что делает его более дорогим.

Титан имеет плотность 4.51 г / см. 3 , что означает, что он легкий по сравнению с другими металлами. Кроме того, чистая форма бывает серебристо-серого цвета. Важно отметить, что титан не магнитный. Как и многие металлы, титан может присутствовать в элементарной форме или в различных сплавах. Эти сплавы часто упрочняются и более устойчивы к коррозии. Большинство сплавов титана используются в аэрокосмической, конструкционной и других областях, где требуется устойчивость к высоким температурам. Элементарный титан часто используется в качестве легирующего элемента.

Сравнение титана и Сталь

Выбор между сталью и титаном зависит от конкретной области применения. В этом разделе сравниваются механические характеристики стали и титана, что помогает определить, как можно специфицировать каждый металл. Однако лучшее сравнение этих металлов основано на разных типах сплавов, а не на обобщенных данных.

Сталь против. Титан: плотность

Плотность можно использовать для определения веса каждого металла. Как отмечалось ранее, титан легче стали и весит почти вдвое меньше стали. Это свойство делает титан подходящим для применений, требующих прочности и легкости, например, в аэрокосмической промышленности. С другой стороны, плотность стали выгодна при использовании в таких местах, как шасси транспортных средств.

Сталь против. Титан: эластичность

Эластичность материала характеризует его гибкость. Эту меру иногда называют модусом Юнга. Это свойство важно для понимания того, как материал реагирует на удар, изгибается он или деформируется, не достигая пластической деформации или нет.

В этом отношении титан имеет низкую эластичность, что означает, что материал изгибается и деформируется под давлением. Эта особенность также затрудняет обработку титана. С другой стороны, сталь имеет более высокий модуль упругости и ее можно обрабатывать с меньшими трудностями. Это свойство делает сталь пригодной для изготовления режущих кромок, поскольку она может ломаться, не сгибаясь под нагрузкой.

Сталь против. Титан: прочность на разрыв

С точки зрения прочности на разрыв сталь намного прочнее титана, в отличие от большинства людей, которые считают, что титан более мощный, чем большинство металлов. Эта особенность делает сталь более широко используемым металлом по сравнению с титаном. Однако титан столь же прочнее, как сталь, и весит почти вдвое меньше стали. Это делает титан более прочным на единицу массы по сравнению со сталью.

Читайте также  Азотирование и цементация стали

В приложениях, требующих общей прочности, сталь является наиболее предпочтительной, поскольку большинство ее сплавов имеют более высокий предел текучести по сравнению с другими металлами. Если вы ищете исключительно прочность, тогда сталь должна быть вашим металлом. Однако, если проект требует прочности на единицу массы, вы выбираете титан.

Сталь против. Титан: удлинение при разрыве

Эта функция является мерой того, насколько материал растягивается до разрыва. Более высокое удлинение при разрыве означает, что материал растягивается больше, прежде чем окончательно разорвется. Другими словами, если металл имеет большее удлинение при разрыве, то он более ковкий. Титан очень пластичен и перед разрушением растягивается почти на половину своей длины. Эта особенность затрудняет обработку титана. С другой стороны, сталь имеет широкий спектр сплавов с низким удлинением при разрыве, что означает, что она более твердая и хрупкая.

Сталь против. Титан: твердость

Твердость считается относительной величиной, которая относится к тому, как материал реагирует на царапины, вмятины, травления и другие удары, наносимые на его поверхность. Твердость металла измеряется с помощью индентора. Титан тверд, но не достигает уровня стали. Это не означает, что титан легко деформируется. Напротив, титан образует твердый слой диоксида, который защищает металл от царапин. Сталь твердая и не царапается. Это делает его подходящим для применений, требующих воздействия суровых условий.

В нижней строке

Сравнение стали с титаном — лучший способ определить лучший материал для проекта. Однако важно понимать, что выбор материала между сталью и титаном зависит от конкретной области применения.

Различия между титаном и сталью можно объяснить различными аспектами, такими как механические свойства. Эти различия позволяют лучше понять каждый металл.

Ссылки на связанные источники:

Рошиндустри специализируется на высоком качестве Быстрое прототипирование, быстрый мелкосерийное производство и крупносерийное производство. Услуги быстрого прототипа, которые мы предоставляем, — это профессиональный инжиниринг, Обработка CNC включая фрезерные и токарные станки с ЧПУ, Изготовление листового металла или прототипирование листового металла, Умрите литье, металлическое тиснение, Вакуумное литье, 3D печать, SLA, Изготовление прототипов методом экструзии пластика и алюминия, Быстрая оснастка, Быстрое литье под давлением, Обработка поверхности закончить услуги и другие услуги быстрого прототипирования Китая, пожалуйста свяжитесь с нами прямо сейчас.

Влияние титана на свойства стали

Уважаемые обучающиеся и выпускники (срок окончания обучения 31.08.2021 г.)!

По вопросам заказа справок об обучении и доходах с 09.08.2021 г. обращаться в каб. 141, по телефону 8 (3519) 29-84-17

Обучающиеся, отчисленные до 31.08.2021 г. заказывают справки об обучении в отделе кадров или архивном отделе.

Организация рейтинговой оценки деятельности ППС и учебных структурных подразделений

Уважаемые коллеги!

Согласно приказу от 30.06.2021 № 10-30/382 «Об организации рейтинговой оценки деятельности ППС и учебных структурных подразделений по итогам работы в 2020/2021 уч. году» в период с 01.09.2021 по 07.09.2021 заведующим кафедрами необходимо заполнить и подтвердить соответствующими отчетными документами рейтинг профессорско-преподавательского состава в автоматизированной системе «Рейтинг ППС»

С видео инструкцией по работе в АС «Рейтинг ППС» можно ознакомиться, пройдя по ссылке

По вопросам доступа к системе обращайтесь в УМУ к Колесниковой М.В., тел. 22-10-42.​​

Официальные аккаунты университета в социальных сетях и мессенджерах

Уважаемые друзья, подписывайтесь на официальные аккаунты университета в социальных сетях и мессенджерах. Будьте в курсе всех интересных событий и новостей нашего университета!

  • magtu.ru – официальный сайт МГТУ им. Г.И.Носова
  • vk.com/nmstu – официальная группа МГТУ им. Г.И.Носова в Вконтакте
  • twitter.com/nmstu_live – официальный твиттер–аккаунт Магнитогорского государственного технического университета им. Г.И. Носова
  • facebook.com/nmstu – официальная страница МГТУ им. Г.И.Носова на Фейсбуке
  • instagram.com/nmstu – официальная страница МГТУ им. Г.И.Носова в Инстаграм
  • www.youtube.com/user/magtu74 – официальный канал МГТУ им. Г.И.Носова на Yotube
  • t.me/nmstu_live – официальный телеграм–канал МГТУ им. Г.И.Носова
  • ok.ru/group/62680042438834 – официальная группа МГТУ им. Г.И.Носова в Одноклассниках
  • zen.yandex.ru/id/6128b053ab28f03af4339dba – официальная страница МГТУ им. Г.И.Носова на Яндекс.Дзене

Центр иностранных языков ИДПО «Горизонт» МГТУ им. Г.И. Носова объявляет набор на языковые курсы

Центр иностранных языков ИДПО «Горизонт» МГТУ им. Г.И. Носова объявляет набор на языковые курсы:

Английский язык (A1 Beginner)

Английский язык (А1 Elementary)

Английский язык (А2 Pre-Intermediate)

Английский язык (B1 Intermediate)

Французский язык (А1 Elementary)

в группу Китайского языка (А1 Elementary)

Испанский язык (А1 Elementary)

Подготовка к международным экзаменам (IELTS)

в группу Немецкого языка

Английский язык для подростков (12-16 лет)

Английский язык для детей (8-11 лет)

Начало занятий: сентябрь 2021 г.

Ждем всех желающих!

Необходимую информацию Вы можете получить по телефонам:

+7 (3519) 22 39 23 (Ольга Александровна)

+7 (919) 406 07 38 (Юлия Александровна)

Приглашаем на II просветительский марафон «Новое знание»

В течение трех дней, с 1 по 3 сентября, российское общество «Знание» проведет II Федеральный просветительский марафон, приуроченный к Всероссийскому дню знаний. Мероприятие пройдет в шести городах России — Москве, Санкт-Петербурге, Нижнем Новгороде, Сочи, Иннополисе и Владивостоке. Все выступления будут сопровождаться интернет-трансляцией на сайте, что позволит каждому желающему из любой точки мира принять участие и получить новые знания.

Участники второго марафона будут обсуждать такие темы, как: история и культура, спорт, наука и технологии, цифровой мир и медиа, бизнес. Речь также пойдет о строительстве «умных» городов будущего, о том, как должна развиваться страна в условиях эпидемических рисков и о новейших достижениях российской науки. В программе мероприятия более ста часов дискуссий, лекций, интервью, открытых уроков и мастер-классов. Гости познакомятся с людьми, которые создают эти достижения, историями их личностного и профессионального развития.

Спикерами марафона «Новое знание» выступят более 150 представителей российского общества и зарубежные гости, добившиеся успеха в различных сферах: выдающиеся деятели науки, культуры, искусства, медицины, государственного управления, а также спортсмены и успешные предприниматели.

Среди выступающих будут министр иностранных дел РФ Сергей Лавров, генеральный директор Первого канала Константин Эрнст, музыкант и продюсер Василий Вакуленко, генеральный директор группы компаний «Яндекс» Аркадий Волож, главный врач городской клинической больницы № 40 в Коммунарке Денис Проценко, генеральный директор «Лаборатории Касперского» Евгений Касперский, трехкратный чемпион мира Александр Овечкин и многие другие.

«КАМПУСНАЯ КАРТА» — НОВАЯ, ВЫГОДНАЯ, ТВОЯ!

Апгрейд «Кампусной карты»: кешбэк за покупки, скидки до 60% в магазинах, льготный проезд и кредитка 10 0 дней без %!

Магнитогорский памятник «Тыл-фронту» может стать «Сокровищем России»

Магнитогорский памятник «Тыл-фронту» может стать «Сокровищем России»

National Geographic Traveler проводит онлайн-голосование, посвященное туристическим возможностям нашей страны. Магнитогорск представлен монументом памяти Великой Отечественной войны — памятником «Тыл-фронту».

Дорогие студенты! Поддержим наш город! Победа в конкурсе позволит представить Магнитогорск как архитектурно-исторический центр с богатым культурным наследием.

КОНКУРС НА ПОВЫШЕННУЮ СТИПЕНДИЮ!

С 16 августа начинается прием документов для участия в конкурсе на право получения повышенной государственной академической стипендии во II полугодии 2021 года.

Рассматриваются достижения студента, полученные за время обучения в ВУЗе и датированные не ранее 1 СЕНТЯБРЯ 2020 ГОДА.
Подача документов на конкурс осуществляется электронным способом через личный кабинет на Образовательном портале МГТУ им. Г.И. Носова с 16 августа по 31 августа 2021 г.
До 31 августа 23:59 студенты могут редактировать свое портфолио, а также получать комментарии по заполнению от ответственных по направлениям деятельности:
Учебная деятельность – Нечкина Екатерина Олеговна, ауд. 141, тел. 29-84-17, ekat.nechkina@yandex.ru;
Научно-исследовательская – Логунова Оксана Сергеевна, ауд. 286, logunova66@mail.ru ;
Иванова Анастасия Викторовна, +7 (951)- 253-10-90, anastasivanova12@gmail.com;
Общественная деятельность – Исмагилова Анастасия Денисовна, ауд. 2102, тел. 22-53-34;
Культурно-творческая деятельность – Шилина Валентина Васильевна, ауд. 091, тел. 29-84-59;
Спортивная деятельность – Кузьмичева Полина Константиновна, Дворец спорта МГТУ 2 этаж, тел. +7 (912) 477-06-17.

Магистры 1 курса, обучающиеся ранее в МГТУ им. Г.И. Носова, для заполнения портфолио вам необходимо обратиться к Рубану Константину Алексеевичу, начальнику УИТ и АСУ, тел. 22-19-05, ruban-k@mail.ru для оперативного создания личного кабинета на Образовательном портале МГТУ им. Г.И. Носова.

Обращаем Ваше внимание, что вся ответственность за заполнение портфолио лежит на конкурсантах, поэтому просим внимательно отнестись к заполнению достижений. Достижения, не соответствующие указанным критериям и не имеющие подтверждающих документов, не оцениваются.

П о вопросам заполнения портфолио обращаться к члену стипендиальной комиссии Исмагиловой Анастасии Денисовне, тел. 22-53-34.