Влияние легирующих элементов на свариваемость стали

Влияние легирующих элементов на свариваемость металлов

Влияние легирующих элементов на свариваемость металлов

При сварке металлов, имеющих различные легирующие элементы (Молибден, Кремний, Хром и др.) могут возникать различные проблемы, влияющие непосредственно на качество полученного сварного соединения (трещины, поры, непровары и т.д.). Для того, чтобы избежать трудностей и проблем, необходимо очень хорошо знать, как влияет тот или иной легирующий элемент на свариваемость изделия.

Знание влияния легирующих элементов на свариваемость различных сталей поспособствует лучшему пониманию процессов сварки.

Углерод
Один из самых значительных химических элементов в сталях.
Содержание углерода в сталях влияет на прочность, закаливаемость, вязкость, свариваемость.
У низкоуглеродистых сталей (углерода менее 0,25%) свариваемость практически не ухудшается.
При увеличении содержания углерода свариваемость резко ухудшается, так как в зонах ЗТВ (зонах термического влияния) возникает большое количество закалочных структур, которые вызывают трещины.

При высоком содержании углерода в присадочном материале увеличивается вероятность образования пор.

Марганец
Марганец является хорошим раскислителем. Электроды или проволоку необходимо применять при сварке в среде СО2. При содержании марганца в металле до 0,8 %, процесс сварки не усложняется. При увеличении содержания стали в металле (1,8%-2,5%) появляется опасность возникновения ХТ (холодных трещин), т.к. марганец способствует появлению хрупких структур (закалочных). При повышенном содержании марганца (11-16%) во время сварки происходит интенсивное выгорание данного вещества. Следовательно, необходимо применять специальные меры, например, использовать сварочные материалы с бОльшим содержанием марганца.

Кремний
Так же как и марганец является хорошим раскислителем. При малом количестве кремний (до 0,03%) на свариваемость не влияет. При содержании кремния 0,8-1,5% свариваемость ухудшается из-за повышенной жидкотекучести кремнистой стали и образования тугоплавких оксидов кремния. При повышенном содержании кремния, из-за увеличенной жидкотекучести особенно опасно появление горячих трещин.

Хром
Содержание хрома в сталях способствует увеличению коррозионной стойкости. Но, при сварке сталей образуются карбиды хрома, которые увеличивают твердость в ЗТВ (зоне термического влияния). Также образуются тугоплавкие окислы, которые затрудняют процесс сварки, а значит ухудшают свариваемость.

Никель
Содержание никеля в сталях способствует увеличению ударной вязкости, которая особенно важная при работе сталей при низких температурах. Также никель способствует увеличению пластичности, прочности стали и измельчению зерна. При этом свариваемость стали не ухудшается. Но, из-за высокой цены данного легирующего элемента, применение ограничено экономическими соображениями.

Молибден
Содержание молибдена в сталях увеличивает несущую способность при высоких температурах и ударных нагрузках, измельчает зерно.
С другой стороны, молибден способствует образованию трещин в ЗТВ и наплавленном металле шва.
Во время сварке окисляется и выгорает. Следовательно, необходимо использовать специальные меры.

Вольфрам
Содержание вольфрама в сталях резко увеличивает твердость стали и ее работоспособность при высоких температурах (красностойкость).
С другой стороны, вольфрам затрудняет процесс сварки и активно окисляется.

Ванадий
Содержание ванадия в сталях резко увеличивает закаливаемость стали. Из-за закаливаемости, а также из-за окисления ванадия и его выгорания, ухудшается свариваемость сталей.

Титан
Использование титана как легирующий элемент обусловлено его высокой коррозионной стойкостью.

Ниобий
Использование ниобия, аналогично титану, обусловлено его высокой коррозионной стойкостью. При сварке сталей ниобий способствует образованию горячих трещин.

Влияние легирующих элементов на свариваемость стали

Углерод(С) — одна из основных примесей, определяющих сва­риваемость стали. Содержание углерода в обычных конструк­ционных сталях до 0,25 % не ухудшает свариваемости. При более высоком содержании свариваемость стали резко ухудшается, так как в зонах термического влияния образуются структуры закал­ки, приводящие к трещинам. Повышенное содержание углерода в присадочном материале вызывает при сварке пористость ме­талла шва.

Марганец(Мп) не ухудшает свариваемости стали, если его со­держание не превышает 0,3. 0,8 %. В сред немарганцовистых (1,8. 2,5 %) сталях марганец повышает их закаливаемость и склонность к образованию трещин при сварке.

Кремний(Si) не влияет на свариваемость стали, если его со­держание не превышает 0,3 %. В обычных углеродистых ста­лях содержится не более 0,2. 0,3 % кремния, в специальных сталях содержание кремния достигает 0,8. ..1,5 %. В таких коли­чествах кремний затрудняет сварку из-за высокой жидкотекуче­сти стали, легкой ее окисляемости и образования тугоплавких оксидов.

Хром(Сг) содержится в низкоуглеродистых сталях в количе­стве 0,2. 0,3 %, в конструкционных — 0,7. 3,5, в хромистых — 12. 18, в хромоникелевых — 9. 35 %. Он затрудняет сварку, так как усиливает окисление металла, образует химические со­единения с углеродом (карбиды хрома), ухудшающие коррози­онную стойкость стали и резко повышающие твердость металла в зонах термического влияния. Хром также содействует образо­ванию тугоплавких оксидов, затрудняющих процесс сварки.

Никель(Ni) в низкоуглеродистых сталях содержится в ко­личестве до 0,2. 0,3 %, в конструкционных — 1. 5, в легиро­ванных — 8. 35 %. В некоторых сплавах содержание никеля достигает 85 %. Он увеличивает пластические и прочностные 9войсТва стали, измельчает зерна, не ухудшая свариваемости.

Молибден(Мо) в сталях содержится в количестве 0,15. 0,8 %. Он измельчает зерно, затрудняет сварку, вызывает образование трещин в наплавленном металле и зонах термического влияния, сильно окисляется и выгорает при сварке.

Содержание в стали 0,8. 1,8 % вольфрама(W) резко увели­чивает ее твердость и работоспособность при высоких темпера­турах. Он сильно окисляется при сварке, требует хорошей защиты от кислорода, затрудняет сварку.

Ванадий(V) обычно содержится в сталях в количестве 0,2. 0,8 %, в штамповых сталях — 1. 1.5 %. Он улучшает закали­ваемость стали, что затрудняет сварку. В процессе сварки актив­но окисляется и выгорает.

Титан(Ti) и ниобий(Nb) содержатся в коррозионно-стойких сталях в количестве до 1 %, не усложняют сварочный процесс и не ухудшают свариваемость стали.

Медь(Си) в специальных сталях имеется в количестве 0,3. 0,8 %. Она улучшает ряд свойств стали (прочность, пластич­ность, ударную вязкость, коррозионную стойкость) и не ухуд­шает ее свариваемость.

Сера(S) в количествах, превышающих предельно допустимые, ухудшает свариваемость стали, вызывает появление Горячих трещин.

Фосфор(Р) в концентрациях, превышающих предельно до­пустимые, ухудшает свариваемость стали, вызывает появление холодных трещин.

Кислород(О) содержится в сплаве в виде оксида железа, ухуд­шает свариваемость стали, снижая ее механические свойства.

Азот(N) образует с железом химические соединения (нитри­ды) в металле сварочной ванны при ее охлаждении, что снижает пластичность стали.

Водород(Н) является вредной примесью. Скапливаясь в от­дельных местах сварного шва, он образует газовые пузырьки, вызывает появление пористости и мелких трещин.

Свариваемость стали можно приближенно определить по коли­честву легирующих элементов, эквивалентных (приравненных) углероду:

„ „ Мп Si Cr Ni Мо V Си Р

6 24 5 10 4 5 13 2

где Сэ — эквивалент углерода, %; С, Мп, Si, Cr, Ni, Мо, V, Си, Р — содержание в стали легирующих элементов, %.

Легирующие элементы в различной степени влияют на свари­ваемость сталей. Поэтому их воздействие сравнивают с влиянием углерода — приводят к эквиваленту углерода. Чтобы опреде­лить Сэ, в формулу вместо символов подставляется процентное содержание легирующих элементов. При Сэ 0,35 % требуется предваритель­ный подогрев, другие технологические методы сварки или по­следующая термообработка.

Как видно из приведенной выше формулы, увеличение в стали содержания кремния, никеля, меди в меньшей степени влияет на ухудшение свариваемости. Ухудшают свариваемость стали увеличение содержания марганца, хрома, молибдена, ванадия. Значительно ухудшает свариваемость увеличение содержания фосфора (более 0,05 %). Наличие фосфора в количестве 0,05 % и менее в формуле не учитывается.

При суммарном содержании в стали примесей марганца, крем­ния, хрома и никеля меньше 1 % сталь хорошо сваривается, если содержание углерода не превышает 0,25 %, удовлетворительно — 0,25. 0,35; ограниченно — 0,35. 0,45 и плохо — свыше 0,45 % углерода.

Если суммарное содержание указанных примесей составляет 1. 3 %, сталь сваривается хорошо при содержании до 0,20 % углерода, удовлетворительно — при 0,2. 0,3, ограниченно — при 0,3. 0,4 и плохо — при содержании более 0,4 % углерода.

При суммарном содержании указанных примесей в стали свы­ше 3 % сталь хорошо сваривается, если количество углерода не превышает 0,18 %, удовлетворительно — 0,18. 0,28, ограничен­но — 0,28. 0,38 и плохо, если в стали более 0,38 % углерода.

Формула эквивалентного углерода в сталях получена опыт­ным путем и не всегда отражает точную картину взаимодействия различных элементов в сварочной ванне и изменения структуры при охлаждении металла шва. Поэтому для определения свари­ваемости обычно сваривают специальные образцы, исследуют микроструктуру наплавленного металла и т.д.

Особую сложность представляет сварка металлов, разли­чающихся своими свойствами. Разные температуры плавления, склонность к образованию хрупких соединений и другие причи­ны вынуждают разрабатывать специальные приемы сварки, осо­бые сварочные материалы.

Для оценки свариваемости металла берут, например, две пластины и сваривают их на нескольких режимах. Затем изго­товляют образцы и определяют ударную вязкость, критическую температуру хрупкости, зернистость, твердость наплавленного металла и зоны термического влияния.

Читайте также  Как согнуть стальную трубу в домашних условиях

При оценке свариваемости стали помимо химического состава учитываются: форма сварной конструкции, толщина металла и его механические свойства, количество и расположение швов в конструкции, технологические особенности сварки и другие характеристики.

Влияние легирующих элементов на свариваемость сталей

Установки для автоматической сварки продольных швов обечаек — в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки — в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Свариваемость сталей — это собирательное понятие. Обобщенно под свариваемостью понимают возможность получения на данной стали сварного соединения с высокими свойствами, не уступающими свойствам основного свариваемого металла и высокого качества — отсутствия различного рода сварочных дефектов (пор, трещин, шлаковин и др.). Чем лучше свариваемость стали, тем шире технологический диапазон разных видов сварки этой стали и тем проще сам процесс. Плохо свариваемая сталь тоже может быть сварена, однако для этого должны быть приняты специальные технологические меры для избежания сварочных дефектов и получения хороших свойств сварного соединения.

Ухудшение свариваемости стали вызывает образование горячих трещин при сварке, холодных трещин в сварных соединениях, сильный рост зерна в околошовной зоне, с образованием в зоне теплового влияния мартенсита или бейнита полностью или частично с высокой хрупкостью, значительно превышающей хрупкость свариваемой стали, образование разупрочненных участков в зоне теплового влияния, возникновение в зоне нагрева участков, склонных к дисперсионному упрочнению, либо сразу после сварки, либо со временем, возникновение высоких остаточных напряжений и деформаций.

Возможность получения качественного сварного соединения с надлежащими свойствами зависит не только от состава свариваемой стали, но и от технологии и условий сварки, толщины свариваемого металла, конструкции объекта и др. Даже трудно свариваемая сталь, склонная к образованию закалочных структур и холодных трещин при сварке, может быть с успехом сварена с получением сварного соединения, удовлетворяющего всем требованиям, если обеспечить при сварке необходимую скорость нагрева и главное замедленное охлаждение или (и) провести термообработку сварного соединения сразу после сварки. Некоторые стали (например, высокохромистые ферритные) очень плохо свариваются дуговой сваркой, но хорошо свариваются контактной сваркой. Поэтому рассматривать влияние легирующих элементов на свариваемость сталей необходимо применительно к одному виду сварки — например, дуговой сварке ручной или автоматической с плавящимся электродом и одинаковыми прочими условиями.

Углерод и все основные легирующие элементы отрицательно влияют на свариваемость. Однако пределы содержания различных легирующих элементов в стали, с которых начинается активное ухудшение свариваемости для разных элементов, различны. Кроме того, эти пределы зависят и от уровня легирования стали другими элементами. Лучше всего сваривается сталь с низким содержанием углерода. Повышение содержания углерода в нелегированной стали до 0,15% С несколько улучшает свариваемость за счет того, что при этом ограничивается рост зерна феррита. В нелегированной и низколегированной стали содержание углерода до 0,25% несущественно ухудшает свариваемость. Заметное ухудшение свариваемости наступает при повышении содержания углерода сверх 0,3%. Особенно плохо свариваются стали с содержанием 0,5% С и более Для сварки таких сталей нужны специальные технологические меры, обеспечивающие получение качественного сварного соединения.

Отрицательное влияние углерода на свариваемость связано с повышением склонности стали к образованию горячих и холодных трещин, с повышением хрупкости металла в зонах теплового влияния (элементы неравновесных структур). Повышение содержания углерода в стали увеличивает объемные изменения при охлаждении, приводящем к образованию неравновесных структур. Влияние легирующих элементов на свариваемость может быть различным в низколегированных и высоколегированных сталях. Низколегированные стали с небольшим содержанием углерода (0,15—0,25%) составляют основную массу сталей для сварных конструкций и изделий, поэтому влияние легирующих элементов на свариваемость лучше всего рассмотреть для них.

Кремний, вводимый в низколегированные стали в количествах до 1,7%, особо вредного влияния на свариваемость не оказывает. Некоторое отрицательное влияние кремния может быть связано с тем, что он упрочняет феррит и способствует неоднородности в распределении углерода. Поэтому в зонах теплового влияния сталей с кремнием более заметно влияние увеличения скорости нагрева на повышение степени неоднородности аустенита и неоднородность свойств после охлаждения. Кроме того, кремний образует устойчивые окисные пленки, что может отрицательно повлиять на свариваемость.

Влияние марганца на свариваемость связано с содержанием углерода в стали — чем выше содержание углерода в стали, тем отрицательнее влияние марганца на свариваемость. При содержании в сталях 0,1% С хорошей можно признать свариваемость сталей, содержащих до 2,5% Мn. При более высоком содержании углерода (0,25%) хорошую свариваемость сохраняют стали при меньшем содержании марганца (1,7—1,8%). Влияние марганца на свариваемость связано главным образом с повышением склонности к появлению элементов закалочных структур в зоне теплового влияния, повышением хрупкости в этих участках и вероятностью появления холодных трещин. Увеличение склонности к образованию структур закалки увеличивает также эффект изменения объема в зоне теплового влияния после сварки.

Влияние хрома на свариваемость также связано с содержанием в стали углерода. В стали с 0,1—0,12% С содержание до 3% Cr сохраняет хорошую свариваемость стали. При содержании 5% Сr сталь сваривается удовлетворительно. При повышении содержания углерода (до 0,25%) содержание хрома до 2% сохраняет у стали достаточно хорошую свариваемость. При большем содержании хрома свариваемость стали значительно ухудшается.

Влияние хрома на ухудшение свариваемости связано с несколькими факторами Хром, как и марганец, повышает склонность к закаливаемости стали в зоне теплового влияния сварки, но в несколько меньшей степени Карбиды, содержащие хром, более трудно растворимы, чем Fe3C или (Fe, Мn)3С, и поэтому при сварочном нагреве аустенит в зоне теплового влияния (ЗТВ) будет менее однородным, чем в нелегированной или марганцовистой стали. При высоком содержании хрома сильно возрастает неоднородность свойств в ЗТВ, появляются участки с низкотемпературным мартенситом и повышается склонность к образованию холодных трещин. Увеличивается объемный эффект превращения аустенита и снижается теплопроводность стали. И то и другое приводит к повышению уровня остаточных напряжений в сварном соединении.

Никель при содержании до 1 % в стали, содержащей до 0,2% С, существенно свариваемость не ухудшает. При повышении содержания никеля свариваемость ухудшается, но до 1,5% Ni остается удовлетворительной. При более высоком содержании никеля либо должно быть снижено содержание углерода в стали либо приняты специальные технологические меры для обеспечения надлежащего качества сварных соединений. Отрицательное влияние никеля на свариваемость связано с повышением устойчивости аустенита и увеличением в продуктах его распада в ЗТВ после сварки мартенсита и бейнита. Кроме того, никель увеличивает растворимость в стали водорода и благоприятствует тем самым повышению склонности к холодным трещинам при сварке. Плохо влияют на свариваемость элементы, дающие в стали устойчивые карбиды. Молибден и вольфрам без значительного ухудшения свариваемости вводят в низкоуглеродистую сталь в количествах до 0,5%. Ванадий и ниобий ухудшают свариваемость при содержании более 0,2%. По-видимому, влияние активных карбидообразователей на свариваемость низколегированных, низкоуглеродистых сталей связано с трудностями растворения устойчивых карбидов при нагреве, трудностями гомогенизации аустенита и вследствие этого с образованием в ЗТВ участков с хрупкими неравновесными структурами. Труднорастворимые карбиды ванадия, ниобия и титана влияют также на процесс кристаллизации сварочной ванны.

Схематически влияние легирующих элементов в низкоуглеродистой низколегированной стали на условный показатель свариваемости представлено на рис. 84. За единицу условно принята свариваемость нелегированной стали с 0,2% С.

Международный институт сварки (МИС) для оценки свариваемости низколегированных сталей (документ IX-535—67) рекомендует пользоваться так называемым показателем эквивалента углерода С,

Cэ = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15 (15)

Символы различных элементов означают содержание данного элемента в процентах. Признаком хорошей свариваемости считается величина Cэ ≤ 0,4. Признавая рациональность такого подхода к оценке влияния состава стали на свариваемость, в ряде работ уточнены коэффициенты, соответствующие различным легирующим элементам. Однако использование формулы (15) для оценки свариваемости имеет и свои недостатки, связанные с недоучетом ряда факторов, также влияющих на свариваемость (например, толщина металла, способ и условия сварки и др.).

Источник: Л.С. Лившиц. «Металловедение для сварщиков». Москва. Машиностроение, 1979.

Свариваемость сталей

Выделяют довольно большое количество параметров, которые определяют основные свойства металла. Среди них выделяют показатель свариваемости. На сегодняшний день сварка стали проводится крайне часто. Подобный способ соединения металлов и других материалов характеризуется высокой эффективностью, так сварной шов может выдерживать большую нагрузку. При плохом показателе провести подобную работу сложно, в некоторых случаях даже невозможно. Все металлы разделяются на несколько групп, о чем далее поговорим подробнее.

Основные критерии, устанавливающие свариваемость

Оценивая свариваемость сталей, всегда уделяют внимание химическому составу металла. Некоторые химические элементы могут повысить этот показатель или снизить его. Углерод считается самым важным элементов, который определяет прочность и пластичность, степень закаливаемости и плавкость. Проведенные исследования указывают на то, что при концентрации этого элемента до 0,25% степень обрабатываемости не снижается. Увеличение количества углерода в составе приводит к образованию закалочных структур и появлению трещин.

Читайте также  Как узнать марку стали в домашних условиях

К другим особенностям, которые касаются рассматриваемого вопроса, можно отнести нижеприведенные моменты:

  1. Практически во всех металлах содержатся вредные примеси, которые могут снижать или повышать обрабатываемость сваркой.
  2. Фосфор считается вредным веществом, при повышении концентрации появляется хладноломкость.
  3. Сера становится причиной появления горячих трещин и появлению красноломкости.
  4. Кремний присутствует практически во всех сталях, при концентрации 0,3% степень обрабатываемости не снижается. Однако, если увеличить его до 1% могут появится тугоплавкие оксиды, которые и снижают рассматриваемый показатель.
  5. Процесс сварки не затрудняется в случае, если количество марганца не более 1%. Уже при 1,5% есть вероятность появления закалочной структуры и серьезных деформационных трещин в структуре.
  6. Основным легирующим элементом считается хром. Он добавляется в состав для повышения коррозионной стойкости. При концентрации около 3,5% показатель свариваемости остается практически неизменным, но в легированных составах составляет 12%. При нагреве хром приводит к появлению карбида, который существенно снижает коррозионную стойкость и затрудняет процесс соединения материалов.
  7. Никель также является основным легирующим элементом, концентрация которого достигает 35%. Это вещество способно повысить пластичность и прочность. Никель становится причиной улучшения основных свойств материала.
  8. Молибден включается в состав в небольшом количестве. Он способствует повышению прочности за счет уменьшения зернистости структуры. Однако, на момент воздействия высокой температуры вещество начинает выгорать, за счет чего появляются трещины и другие дефекты.
  9. В состав часто в качестве легирующего элемента добавляется медь. Ее концентрация составляет около 1%, за счет чего немного повышается коррозионная стойкость. Важной особенностью назовем то, что медь не ухудшает обработку сваркой.

В зависимости от особенностей структуры и химического состава материала все сплавы делятся на несколько групп. Только при учете подобной классификации можно выбрать наиболее подходящий сплав.

Классификация сталей по свариваемости

Хорошей обрабатываемостью обладают сплавы, в которых при нагреве не образуются трещины. По данной характеристике выделяют четыре основных группы:

  1. Хорошая обрабатываемость сваркой определяет то, что сталь после термической обработки остается прочным и надежным. При этом создаваемый шов может выдерживать существенное механическое воздействие.
  2. Удовлетворительная степень позволяет проводить обработку без предварительного подогрева. За счет этого существенно ускоряется процесс, а также снижаются затраты.
  3. Ограниченно свариваемые стали сложны в обработке, сварку можно провести только при применении специального оборудования. Именно поэтому повышается себестоимость самого процесса.
  4. Плохая податливость сварке не позволяет проводить рассматриваемую обработку, так как после получения шва могут появится трещины. Именно поэтому подобные материалы не могут использоваться для получения ответственных элементов.

Классификация сталей по свариваемости

Каждая группа характеризуется своими определенными особенностями, которые нужно учитывать. Сталь 20 относится к первой группе, в то время как распространенная сталь 45 обладает низкой податливостью к сварке.

Группы свариваемости

Все группы свариваемости сталей характеризуются своими определенными особенностями. Среди них можно отметить следующие моменты:

  1. Первая группа, которая характеризуется хорошей свариваемостью, может применяться при сварке без предварительного подогрева и последующей термической обработки шва. Отпуск выполняется для снижения напряжения в металле. Как правило, подобное свойство связано с низкой концентрацией углерода.
  2. Вторая характеризуется тем, что склонна к образованию трещин и дефектов на швах. Именно поэтому рекомендуется проводить предварительный подогрев материала, а также последующую термическую обработку для снижения напряжений.
  3. При ограниченном показателе сталь склонна к образованию трещин. Для того чтобы исключить вероятность появления трещин следует материал предварительно разогреть, после сварки в обязательном порядке проводится термообработка.
  4. Последняя группа характеризуется тем, что в большинстве случаев на швах образуются трещины. При этом предварительный разогрев структуры не во многом решает проблему. После сварки обязательно проводится многоступенчатое улучшение.

Каждый сплав и металл относится к определенной группе. Кроме этого, степень свариваемости меняется после улучшения материала, к примеру, путем азотирования или закалки.

Как влияют на свариваемость легирующие примеси

Как ранее было отмечено, включение в состав большого количества легирующих элементов приводит к изменению основных характеристик. При этом отметим следующие моменты:

  1. При низком показателе концентрации сталь лучше поддается сварке.
  2. Некоторые химические вещества могут повысить рассматриваемый показатель, другие ухудшить.

Именно поэтому при выборе легированного сплава уделяется внимание не только типу легирующих элементов, но и их концентрации. Принятые стандарты ГОСТ определяют то, что при маркировке могут указывать основные химические вещества и их количество в составе.

Влияние содержания углерода на свариваемость стали

Во многом именно углерод определяет основные эксплуатационные характеристики сплава. Слишком высокая концентрация подобного химического вещества приводит к повышению твердости и прочности, но также и хрупкости. Кроме этого, в несколько раз снижается степень свариваемости. К другим особенностям отнесем следующие моменты:

  1. Если в составе углерода не более 0,25%, то рассматриваемый показатель остается на достаточно высоком уровне.
  2. Слишком большое количество углерода в составе приводит к тому, что металл после термического воздействия начинает менять свою структуру, за счет чего появляются трещины.

Стоит учитывать, что проводимая химикотермическая процедура может привести к снижению податливости к рассматриваемому способу соединения. Именно поэтому улучшение сплава проводится после создания конструкции путем обработки шва.

Свариваемость низкоуглеродистых сталей

Низкоуглеродистые сплавы хорошо подаются свариванию. При этом можно отметить следующие моменты:

  1. В подобных сплава концентрация углерода менее 0,25%. Этот показатель свойственен сплавам, которые имеют повышенную гибкость и относительно невысокую твердость поверхностного слоя. Кроме этого, снижается значение хрупкости. Поэтому низкоуглеродистые стали часто используют при создании листовых заготовок. При добавлении небольшого количество легирующих элементов может быть повышена коррозионная стойкость.
  2. Для повышения основных характеристик в состав могут добавлять различные легированные элементы, но в небольшом количестве. Примером можно назвать марганец и никель, а также титан.

Как правило, подобные металлы не нужно перед обработкой подвергать подогреву, а после проведения процедура закалка или отпуск выполняется только для при необходимости.

Свариваемость закаленной стали

Распространенной термической обработкой можно назвать закалку. Она предусматривает воздействие высокой температуры, которая может изменить структуру материала. После охлаждения происходит перестроение структуры, за счет чего происходит упрочнение структуры и повышение твердости поверхностного слоя. К другим особенностям отнесем следующие моменты:

  1. Закалка предусматривает увеличение концентрации углерода в поверхностном слое. Именно поэтому степень свариваемости существенно снижается.
  2. Подогрев заготовки проводится для того, чтобы упростить проводимую работу. Для этого может использоваться газовая грелка или иной источник тепла.

Закаленная сталь сложна в обработке. Кроме этого, если ранее не проводился отпуск в структуре может быть переизбыток напряжения, что и приводит к появлению трещин.

Повторная обработка швов может не привести к повышению их прочности.

В заключение отметим, что хорошей податливость сварке обладают металлы из различных групп. Примером можно назвать некоторые нержавейки, которые даже после воздействия тепла обладают коррозионной устойчивостью. Именно поэтому для сварочных работ рекомендуется выбирать материал, который характеризуется хорошей обрабатываемостью.

Легированные стали и особенности их сварки

Легированными называются стали, которые в своем составе содержат легирующие элементы, придающие сталям специальные свойства. Основные легирующие элементы – это хром, марганец, никель, кремний, молибден, вольфрам и другие. Легирование делается с целью изменения строения металла и придания ему определенных физико-механических свойств. Легированием можно повысить коррозионностойкость материала, его твердость, износостойкость и так далее. Ниже будут рассмотрены особенности сварки легированных сталей.

Легированные стали бывают трех видов. Это низколегированные, в которых содержание легирующих элементов не более 2,5% , среднелегированные – с содержанием 2,5% – 10% и высоколегированные – более 10%. В зависимости от присутствующих в составе материала легирующих элементов они называются хромистыми, ванадиевыми, хромоникелевыми и так далее. Каждый такой элемент в маркировке стали обозначается специальными буквами: Х – хром, М -молибден, В – вольфрам, Г – марганец, К – кобальт, Ю – алюминий, С – кремний, Н – никель, Т – титан, Ф – ванадий, Б – ниобий, А – азот, Р – бор. Легированные стали подразделяются на следующие типы: нержавеющие, жаростойкие, кислотостойкие и окалиностойкие, которые и определяют сферу применения каждой конкретной стали.

Низколегированные стали

Низколегированные стали должны обладать хорошей пластичностью, удовлетворительной свариваемостью и высокой сопротивляемостью хрупкому разрушению. Оптимальные механические свойства они приобретают после закалки или нормализации и последующего высокого отпуска. Примеры низколегированных сталей – 14Г2, 14ХГС, 15ГС и другие. Они характеризуются малым содержанием углерода ( Технология сварки низколегированных металлов

Основными показателями свариваемости низколегированных сталей являются сопротивляемость сварных соединений холодным трещинам и хрупкому разрушению. Такие металлы обычно имеют ограниченное содержание C, Ni, Si, S и P, поэтому при соблюдении режимов сварки и правильном применении присадочных материалов горячие трещины отсутствуют. Критериями при определении диапазона режимов выполнения сварочных работ и температур предварительного подогрева служат допустимые максимальная и минимальная скорости охлаждения металла околошовной зоны. Максимально допустимые скорости охлаждения принимаются таким образом, чтобы предотвратить образование холодных трещин в металле околошовной зоны.

Читайте также  Гибкий трубопровод из нержавеющей стали

Химический состав сплавов

Электроды для сварки низколегированных сталей ручной дуговой сваркой имеют низководородное фтористо-кальциевое покрытие. Широко применяют электроды типа Э70 по ГОСТ 9467-75. Сварку выполняют постоянным током при обратной полярности. Металл, наплавленный электродами, должен соответствовать следующему химическому составу, %: С до 0,10 ; Mn 0.8…1,2 ; Si 0,2…0.4 ; Cr 0,6…1,0 ; Mo 0,2…0.4 ; Ni 1,3…1,8 ; S до 0,03 ; Р до 0,03. Сварочный ток выбирают в зависимости от марки и диаметра электрода, при этом учитывают положение шва в пространстве, вид соединения и толщину свариваемого металла. Сварку технологических участков нужно производить без перерывов, не допуская охлаждения сварного соединения ниже температуры предварительного подогрева и нагрева его перед выполнением следующего прохода выше 200С°.

Особенности сварки низколегированных сталей под флюсом заключаются в её проведении на постоянном токе обратной полярности. Сила тока при этом не должна превышать 800 А, напряжение дуги – не более 40 В, скорость сварки изменяют в пределах 13…30 м/ч. Одностороннюю однопроходную сварку применяют для соединений толщиной до 8 мм и выполняют на остающейся стальной подкладке или флюсовой подушке. Максимальная толщина соединений без разделки кромок, свариваемых двусторонними швами, не должна превышать 20 мм. Для стыковых соединений без скоса кромок (односторонних или двусторонних) используют проволоку марки Св-08ХН2М, так как швы в этом случае имеют излишне высокую прочность и применение более легированной проволоки для таких соединений нецелесообразно.

Влияние легирующих элементов на структуру и свойства металлов

Если сварка низкоуглеродистых и низколегированных сталей осуществляется в углекислом газе, то в качестве электрода применяют проволоку марок Св-08Г2С, Св-10ХГ2СМА, Св-08ХН2Г2СМЮ (ГОСТ 2246-70) или порошковую проволоку. При сварочных работах в смесях на основе аргона используют проволоку марки Св-08ХН2ГМЮ, которая обеспечивает высокий уровень механических свойств и хладостойкость металлических швов при сварке сталей с прочностью до 700 МПа. Проволоки указанных марок рекомендуются и для сварки угловых швов с катетом свыше 15 мм. Для угловых швов с меньшим катетом в большинстве случаев используют проволоку марки Св-08Г2С. Эту проволоку также применяют при сварке низкоуглеродистых и низколегированных сталей повышенной прочности 09Г2, 10Г2С1, 14Г2, 10ХСНД и 15ХСНД.

Газовая сварка низколегированных сталей характеризуется повышенным разогревом свариваемых кромок, пониженной коррозионностойкостью и усиленным выгоранием легирующих примесей. Это приводит к ухудшению качества сварных соединений по сравнению с другими способами сварки. При газовой сварке в качестве присадочного материала используют проволоку марок СВ-10Г2, Св-08, Св-08А, а для ответственных швов — Св-18ХГС и Св-18ХМА. Механические свойства шва можно повысить проковкой при температуре 800 °С — 850°С с последующей нормализацией.

Среднелегированные стали

Среднелегированные стали содержат углерод в количестве от 0,4% и более. Они легированы в основном Ni, Mo, Cr, V, W. Оптимальное сочетание прочности, вязкости и пластичности достигается после закалки и низкого отпуска. Такие среднелегированные стали, как ХВГ, ХВСГ, 9ХС, пользуются большим спросом за счет своих легирующих добавок при изготовлении сверл, разверток и протяжек.

Эти стали выплавляют из чистых шихтовых материалов для повышения пластичности и вязкости. Также их тщательным образом очищают от фосфора, серы, газов и различных неметаллических включений. В этом случае стали могут подвергаться электрошлаковому или вакуумно-дуговому переплаву, рафинированию в ковше жидкими синтетическими шлаками. Хорошее сочетание прочности, вязкости и пластичности среднелегированных сталей достигается термомеханической обработкой.

Технология сварки среднелегированных металлов

Чтобы обеспечить эксплуатационную надежность сварных соединений, нужно при выборе сварочных материалов стремиться к получению швов такого химического состава, при котором их механические свойства имели бы требуемые значения. Степень изменения этих свойств зависит от доли участия основного металла в формировании шва. Поэтому следует выбирать такие сварочные материалы, которые содержат легирующих элементов меньше, чем основной металл. Легирование металла шва за счет основного металла позволяет повысить свойства шва до необходимого уровня.

При сварке среднелегированных глубокопрокаливающихся высокопрочных сталей нужно выбирать такие сварочные материалы, которые обеспечат получение швов, обладающих высокой деформационной способностью при минимально возможном количестве водорода в сварочной ванне. Это достигается применением низколегированных сварочных электродов, не содержащих в покрытии органических веществ и подвергнутых высокотемпературной прокалке. Одновременно при выполнении сварочных работ следует исключить другие источники насыщения сварочной ванны водородом (влага, ржавчина и другие).

Для сварки среднелегированных сталей широко применяются аустенитные сварочные материалы. Для механизированной сварки и изготовления стержней электродов в ГОСТ 2246-70 предусмотрены проволоки марок Св-08Х20Н9Г7Т и Св-08Х21Н10Г6, а в ГОСТ 10052-75 – электроды типа ЭА-1Г6 и др. Электродные покрытия применяются вида Ф, а для механизированной сварки – основные флюсы. Для сварки среднелегированных высокопрочных сталей используют электроды типов Э-13Х25Н18, Э-08Х21Н10Г6 и другие по ГОСТ 10052-75 и ГОСТ 9467-75.

Высокое качество сварных соединений толщиной 3…5 мм достигается при аргонодуговой сварке неплавящимся электродом. При этом для увеличения проплавляющей способности дуги применяют активирующие флюсы (АФ). Сварка с АФ эффективна при механизированных способах для получения равномерной глубины проплавления. Неплавящийся электрод при сварке с АФ выбирают из наиболее стойких в эксплуатации марок активированного вольфрама.

Газовая сварка легированных сталей осуществляется ацетиленокислородом, который обеспечивает качественный сварной шов. Газы-заменители в данном случае применять не рекомендуется. Но даже ацетиленокислород не может стопроцентно гарантировать получение качественного шва. Этого можно достичь только путем применения дуговой сварки.

Закалка стали – обязательный этап в машиностроении, так как от правильности его выполнения зависит качество продукции. Подробнее читайте в этой статье.

Высоколегированные стали

Высоколегированные стали имеют повышенно содержание легирующих элементов – Cr и Ni (обычно не ниже 16% и 7% соответственно). Они придают таким металлам соответствующую структуру и необходимые свойства. Высоколегированные стали по сравнению с менее легированными обладают высокой хладостойкостью, коррозионностойкостью, жаропрочностью и жаростойкостью. Несмотря на высокие свойства этих сталей, их основное служебное назначение определяет соответствующий подбор состава легирования. В соответствии с этим их можно разделить на три группы: жаростойкие, жаропрочные и коррозионностойкие.

После соответствующей термообработки высоколегированные стали обладают высокими прочностными и пластическими свойствами. В отличие от углеродистых при закалке эти материалы приобретают повышенные пластические свойства.

Структуры высоколегированных сталей очень разнообразны и зависят в основном от их химического состава, то есть от содержания основных элементов: хрома (ферритизатора) и никеля (аустенитизатора). Также на структуру влияет содержание других легирующих элементов-ферритизаторов (Mo, Ti, Si, Al, W, V) и аустенизаторов (Co, Cu, C, B).

Технология сварки высоколегированных металлов

Высоколегированные стали обладают комплексом положительных свойств. Поэтому одну и ту же марку иногда можно использовать для изготовления изделий различного назначения. В связи с этим и требования к свойствам сварных соединений будут индивидуальными. Это определит и различную технологию выполнения сварочных работ, направленную на получение сварного соединения с необходимыми свойствами, определяемыми составом металла шва и его структурой.

Легирующие элементы – обозначение

Особенности сварки высоколегированных сталей определяются наличием у них характерных теплофизических свойств. Пониженный коэффициент теплопроводности сильно изменяет распределение температур в шве и околошовной зоне. Это увеличивает глубину проплавления основного металла, а с учетом повышенного коэффициента теплового расширения возрастает и коробление изделий. Поэтому для уменьшения коробления нужно применять способы и режимы, отличающиеся максимальной концентрацией тепловой энергии.

При ручной дуговой сварке высоколегированных сталей сварочные проволоки одной по ГОСТу марки имеют широкий допуск по химическому составу. Применением электродов с фтористокальциевым покрытием достигается получение металла шва с нужным химическим составом. Тип покрытия электродов для данной сварки диктует необходимость применения тока обратной полярности. Тщательная прокалка электродов способствует уменьшению вероятности образования в швах пор и вызываемых водородом трещин.

Газовая сварка высоколегированных сталей наименее благоприятна, для соединения этих кислотостойких сталей, которые подвержены значительной межкристаллитной коррозии. Такая сварка может использоваться для сваривания жаропрочных и жаростойких сталей толщиной 1…2 мм. Сварка ведется нормальным пламенем мощностью 70…75 л/ч на 1 мм толщины. В сварных соединениях могут образовываться большие коробления.

Сварка под флюсом высоколегированных сталей толщиной 3…50 мм имеет большое преимущество перед ручной дуговой сваркой ввиду стабильности состава и свойств металла по всей длине шва. Это достигается отсутствием частых кратеров, образующихся при смене электродов, равномерностью плавления электродной проволоки и основного металла по длине шва, а также более надежной защитой зоны сварки от окисления легирующих компонентов кислородом воздуха.

При сварке под флюсом уменьшается трудоемкость подготовительных работ, так как разделку кромок выполняют на металле толщиной свыше 12 мм (при ручной сварке – свыше 3…5 мм). Типы флюсов предопределяют их использование для сварки постоянным током обратной полярности.