Влияние легирующих элементов на прокаливаемость стали

Влияние легирующих элементов на сталь – как делают идеальные сплавы?

Влияние легирующих элементов на свойства металлургических сплавов изучено по-настоящему хорошо. Благодаря этому введение в сталь различных добавок позволяет получать композиции с уникальными технологическими характеристиками.

1 Группы легирующих элементов и их обозначение

Компоненты, используемые для улучшения свойств сталей, разбивают по степени применимости на три подвида:

  1. Никель – обозначение в готовом сплаве – Н, молибден – М;
  2. Марганец – Г, хром – Х, кремний – С, бор – Р;
  3. Ванадий – Ф, ниобий – Б, титан – Т, цирконий – Ц, вольфрам – В.

К третьему подвиду относят и остальные элементы для легирования – азот (обозначение – А), медь (Д), алюминий (Ю), кобальт (К), бор (Р), фосфор (П), углерод (У), селен (Е). Отметим, что подобное деление обусловлено в основном экономическими соображениями, а не сугубо физическими.

По характеру воздействия добавок на модификации (полиморфные), наблюдаемые в сталях, все легирующие элементы делят на два типа. К первому относят компоненты, которые при любых температурах способны стабилизировать аустенит (в основном это марганец и никель). Вторая группа включает в себя элементы, которые при определенном своем содержании могут поддерживать ферритную структуру сплава (алюминий, молибден, хром, кремний, вольфрам и другие).

По механизму влияния на свойства и структуру сталей добавки причисляют к одному из трех типов:

  1. Легирующие элементы, способные создавать карбиды углерода при реакции с последним (бор, молибден, титан, цирконий).
  2. Добавки, обеспечивающие полиморфные превращения (альфа-железо в гамма-железо).
  3. Химэлементы, при использовании которых получаются интерметаллические соединения (ниобий, вольфрам).

Правильное легирование сталей подразумевает введение в их состав тех или иных добавок в строго рассчитанных количествах. При этом оптимальных результатов металлурги достигают в случае, когда «насыщение» сплавов производится комплексно.

2 Какие свойства сплавов позволяют улучшить легирующие добавки?

Легирование дает возможность снизить деформируемость изделий, производимых из различных марок стали, снизить порог хладоломкости сплавов, свести к минимуму риск появления в них трещин, значительно уменьшить скорость закалки и при этом повысить:

  • прокаливаемость;
  • ударную вязкость;
  • текучесть;
  • сужение (относительное);
  • коррозионную стойкость.

Все легирующие добавки (кроме кобальта), повышают прокаливаемость сталей и уменьшают (зачастую весьма существенно) критическую скорость закалки. Достигается это за счет увеличения устойчивости аустенита в сплавах.

Образующие карбиды элементы способны замещать атомы железа в цементите. За счет этого карбидные фазы становятся более устойчивыми. При выделении карбидов из твердых растворов наблюдается явление дисперсионного упрочнения сталей. Другими словами – сплав получает дополнительную твердость.

Также карбидообразующие добавки делают процесс коагуляции дисперсных частиц в сталях более медленным и препятствуют (при нагреве) росту аустенитных зерен. Благодаря таким легирующим компонентам сплавы становятся намного прочнее.

Аустенитную структуру улучшают любыми легирующими добавками, кроме углерода и азота.

Насыщенный добавками аустенит получает высокий показатель теплового расширения, становится парамагнитным, у него снижается предел текучести. Композиции с подобными свойствами незаменимы для выпуска немагнитных и нержавеющих сталей. Аустенитные сплавы, кроме того, прекрасно упрочняются при грамотно проведенной холодной деформации.

Стали, имеющие ферритную структуру, при легировании также обретают добавочную прочность. Максимальное влияние на этот показатель оказывает хром и марганец. Обратите внимание! Прочностные характеристики сплавов увеличиваются при снижении геометрических параметров ферритных зерен.

3 Влияние конкретных химических элементов на свойства стали – коротко об основном

Давайте посмотрим, какие именно характеристики готовых сплавов способны улучшить те или иные добавки:

  • Вольфрам создает карбиды, которые повышают красностойкость и показатели твердости стали. Также он облегчает процесс отпуска готовой продукции, снижая хрупкость стали.
  • Кобальт увеличивает магнитный потенциал металла, его ударостойкость и жаропрочность.
  • Никель повышает прокаливаемость, прочность, коррозионную стойкость, пластичность сталей и делает их более ударопрочными, снижает предел хладноломкости.
  • Титан придает сплавам высокую плотность и прочностные свойства, делает металл коррозионностойким. Стали с такой добавкой хорошо обрабатываются специальным инструментом на металлорежущих агрегатах.
  • Цирконий вводят в сплавы, когда необходимо получить в них зерна со строго определенными размерами.
  • Марганец делает металл устойчивым к износу, повышает его твердость, удароустойчивость. При этом пластичные свойства сталей остаются на прежнем уровне, что важно. Заметим – марганца нужно вводить не менее 1 %. Тогда влияние этого элемента на эксплуатационные показатели сплава будет ощутимым.
  • Медь делает металлургические композиции стойкими к ржавлению.
  • Ванадий измельчает зерно сплава, делает его прочным и очень твердым.
  • Ниобий вводят для снижения явлений коррозии в сварных изделиях, а также для повышения кислотостойкой стальных конструкций.
  • Алюминий увеличивает окалийность и жаропрочность.
  • Неодим и церий используют для сталей с заданной заранее величиной зерна, сплавов с малым содержанием серы. Эти элементы также снижают пористость металла.
  • Молибден повышает прочность сплавов на растяжение, их упругость и красностойкость. Кроме того, эта легирующая добавка делает стали стойкими к окислению при высоких температурах.

Больше влияние на характеристики сталей оказывает кремний. Он повышает окалийность и упругость металла. Если кремния содержится около 1,5 %, сталь становится вязкой и при этом очень прочной. А при его добавке более 1,5 % сплавы обретают свойства магнитопроницаемости и электросопротивления.

Грамотно выполненное легирование сталей обеспечивает их особыми свойствами. И современные металлургические предприятия активно используют этот процесс для выпуска широкой номенклатуры сплавов с высокими технологическими характеристиками.

Влияние легирующих элементов на свойства стали

кремний. Благодаря этому представляется возможным получить достаточно высокую вязкость отпущенного мартенсита при отсутствии в его составе никеля или меди. Хромокремнистые и хромомарганцевокремнистые стали описанных выше составов по своей вязкости и температурному запасу вязкости приближаются к хромоникельмолибденовым и хромомедистомолибденовым сталям со средним содержанием в них никеля или меди (1,5— 1,7%).

4. Влияние легирующих элементов на механические свойства стали в термически улучшенном состоянии

Влияние легирующих элементов на механические свойства улучшенной стали, имеющей структуру сорбита, проявляется в следующих направлениях:

1. Присутствующие в твердом растворе легирующие элементы изменяют механические свойства феррита. Между тем, феррит является основой сорбита и, следовательно, играет решающую роль в формировании свойств термически улучшенной стали.

2. Содержащиеся в стали карбидообразующие элементы определяют течение процессов карбидообразования при высоком отпуске как в отношении температурных границ их развития, степени дисперсности образующихся фаз, в связи с температурой отпуска, так и в отношении распределения легирующих элементов между карбидами и а-железом. В то же время степень дисперсности карбидной фазы, как и характер распределения элементов между отдельными составляющими сорбита, оказывает решающее влияние на механические свойства улучшенной стали.

3. Легирующие элементы замедляют процессы возврата и рекристаллизации а-фазы при высоком отпуске, смещая температурные границы их течения в сторону более высоких температур, и оказывают влияние на величину рекристаллизирующегося в процессе высокого отпуска зерна ферритной основы сорбита.

4. Большинство легирующих элементов заметно повышает восприимчивость стали к отпускной хрупкости. У сталей, сильно подверженных отпускной хрупкости, это свойство, вероятно, не устраняется полностью даже путем охлаждения изделий после высокого отпуска в воде. Очевидно, что это влечет за собой снижение запаса вязкости улучшенной стали.

Легирование определяет также возможность достижения высоких механических свойств у термически улучшаемой стали, в крупных сечениях изделий. Действительно, путем легирования можно обеспечивать получение при закалке структуры мартенсита или мартенсита с некоторым количеством игольчатого троостита в любых заданных сечениях. Достижение такой структу

ры в сколь-либо значительных сечениях в случае применения нелегированной стали практически исключено, поскольку обычная углеродистая сталь характеризуется высокими значениями критической скорости закалки. Между тем, получаемая в результате закалки структура оказывает громадное влияние на свойства стали после высокого отпуска; только при наличии исходной структуры мартенсита или мартенсита с небольшим количеством игольчатого троостита достигаются удовлетворительные механические свойства в высокоотпущенном состоянии (глава VI).

В зависимости от состава и условий термической обработки (в частности, температуры отпуска) механические свойства стали могут изменяться в широком диапазоне значений. В нашу задачу, однако, не входит описание всех возможных вариантов свойств улучшенной стали в связи с ее составом и температурами отпуска. Эти данные можно найти в справочниках. Мы ограничиваемся лишь рассмотрением особенностей влияния легирующих элементов на механические свойства термически улучшенных сталей первоначально при индивидуальном, а затем при комплексном их легировании. Действие легирующих элементов рационально наблюдать только в тех случаях, когда достигается удовлетворительная прокаливаемость стали в заданных сечениях и за счет быстрого охлаждения после высокого отпуска устраняется или резко ослабляется отпускная хрупкость. Все дальнейшие выводы будут относиться только к указанным случаям.

Читайте также  Ферромагнитная нержавеющая сталь

Кремний. Влияние кремния на механические свойства стали после закалки в воде и последующего высокого отпуска показано в табл. 67

Легирование стали кремнием сопровождается повышением показателей прочности при одновременном незначительном снижении относительного сжатия и сохранении относительного удлинения примерно на одном и том же уровне. Ударная вязкость при содержании в стали кремния 1,5% и более резко снижается.

Общий характер действия кремния на механические свойства улучшенной стали имеет некоторые черты сходства с влиянием его на свойства феррита. Действительно, и в том и другом случае под влиянием кремния возрастает прочность и снижается вязкость металла. Такое явление вполне закономерно, поскольку кремний, как элемент, не образующий карбидов, главным образом воздействует на ферритную основу сорбита улучшенной стали. К этому следует добавить, что кремний сильно замедляет процесс укрупнения карбидов при отпуске и потому увеличивает устойчивость стали против отпуска, способствуя достижению при одинаковой температуре отпуска более высоких показателей прочности. Совокупность действия кремния в указанных направлениях приводит к тому, что у отпущенной при одинаковой температуре нагрева стали с повышением содержания кремния возрастает прочность, но снижается вязкость.

Однако, поскольку при одинаковом отпуске с увеличением содержания в стали кремния прочность непрерывно возрастает, затруднительно по таким данным выявить истинное действие кремния на ударную вязкость, так как эффект влияния элемента «вуалируется» одновременным изменением прочности. Более показательным для оценки действия элементов на ударную вязкость следует считать испытания стали с эквивалентным содержанием углерода при одинаковой твердости образцов. На рис. 189 по данным автора показано влияние кремния на ударную вязкость образцов стали с 0,26—0,28% С, имеющих твердость 228—217 Н при различных температурах испытания. Одинаковая твердость образцов с различным содержанием кремния была достигнута за счет изменения температур отпуска. Нелегированная сталь отпускалась при 560°, сталь с 1,48% Si — при 590° и сталь с 2,93% Si —при 660°.

Из рисунка видно, что при одинаковой твердости присутствие в улучшенной стали кремния в количестве 1,48% вызывает небольшое повышение температурного запаса вязкости; увеличение количества кремния до 2,93% сопровождается резким понижением вязкости при всех температурах испытания.

Следовательно, влияние кремния на ударную вязкость и температурный запас вязкости не является однозначным; при среднем содержании этого элемента (примерно 1,5%) его действие может оцениваться скорее как положительное; при высоком содержании (3,0%) — как явно отрицательное.

На рис. 190 сравниваются свойства нелегированной стали с 0,41% С со свойствами стали, содержащей 0,41% С и 1,43% Si, при различных температурах отпуска. Образцы сечением 70 X 70 мм закаливались в масле, потому следует предположить, что в условиях опыта не была достигнута закалка на мартенсит. Последнее, впрочем, подтверждается также низкими показателями прочности стали в отпущенном при

300° состоянии. Тем не менее и в этом случае общий характер влияния кремния на свойства улучшенной стали сохраняется тот же, что был отмечен выше. После отпуска кремнистой и нелегированной стали при одинаковых температурах, расположенных выше 550°, нелегированная сталь обладает несколько более высокой ударной вязкостью и одновременно пониженной прочностью. Если сравнивать ударную вязкость стали при одной и той же ее прочности, то можно констатировать некоторые преимущества кремнистой стали и в этом случае. Действительно, сталь с 1,43% Si, отпущенная при 700°, имеет предел прочности, равный 75 кг/мм 2 ; углеродистая сталь такое значение предела

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Закаливаемость и прокаливаемость стали

Сообщение об ошибке

СОДЕРЖАНИЕ

  • Закаливаемость и прокаливаемость стали
  • Литература

Закаливаемость и прокаливаемость стали

Под закаливаемостью понимают способность стали повышать твердость в результате закалки. Закаливаемость стали определяется в первую очередь содержанием в стали углерода. Чем больше в мартенсите углерода, тем выше его твердость. Легирующие элементы оказывают относительно небольшое влияние на закаливаемость.

Под прокаливаемостью понимают способность стали получать закаленный слой с мартенситной или троосто-мартенситной структурой и высокой твердостью на ту или иную глубину. Прокаливаемость определяется критической скоростью охлаждения, зависящей от состава стали. Если действительная скорость охлаждения в сердцевине изделия будет превышать критическую скорость закалки vк (рис.1, vк′″ ), то сталь получит мартенситную структуру по всему сечению и тем самым будет иметь сквозную прокаливаемость.


Рис.1. Зависимость прокаливаемости
от величины критической скорости
закалки vк:
а и а′ – глубина закаленного слоя;
vк′ – критическая скорость охлаждения
углеродистой стали;
vк″ – критическая скорость охлаждения
низколегированной стали;
vк′″ – высоколегированной стали
(сталь легирована несколькими элементами)

Если действительная скорость охлаждения в сердцевине будет меньше vк (vк′, vк″ ), то изделие прокалится только на некоторую глубину а, а′, и прокаливаемость будет неполной. В этом случае в сердцевине произойдет распад аустенита с образованием пластинчатой ферритно-карбидной структуры (троостита, сорбита или перлита).

За глубину закаленного слоя условно принимают расстояние от поверхности до полумартенситной зоны (50 % мартенсита + 50 % троостита). Диаметр заготовки, в центре которой после закалки в данной охлаждающей среде образуется полумартенситная структура, называют критическим диаметром. Величина критического диаметра определяет размер сечения изделия, прокаливающегося насквозь, т. е. получающего высокую твердость, а после отпуска и высокие механические свойства по всему сечению. Полумартенситная структура во многих случаях не обеспечивает максимум механических свойств – сильно снижается σ -1 и ан. В связи с этим прокаливаемость нередко определяют по глубине закаленного слоя со структурой 95 % мартенсита. Критический диаметр для 95 % мартенсита примерно на 25 % меньше критического диаметра, определенного по полумартенситной зоне. Полная прокаливаемость на структуру из 99,9 % мартенсита составляет ∼ 50 % от полумартенситной (для инструментальных, цементируемых и нитроцементируемых сталей критический диаметр определяется для структуры 95–99 %). Полумартенситную зону принимают в качестве критерия прокаливаемости потому, что ее легко определить по микроструктуре, но еще проще по твердости. Твердость полумартенситной структуры зависит от содержания в стали углерода. Например, при 0,13–0,22 % С твердость полумартенситной структуры углеродистой стали HRC 25, легированной – HRC 30; при 0,28–0,32 % С соответственно HRC 35 и HRC 40, при 0,43–0,52 % С – HRC 45 и HRC 50 и при 0,53–0,62 % С – HRC 50 и HRC 55.

Прокаливаемость тем выше, чем меньше критическая скорость закалки, т. е. чем выше устойчивость переохлажденного аустенита.

Легированные стали вследствие более высокой устойчивости переохлажденного аустенита и соответственно меньшей критической скорости охлаждения (рис.1, vк″ и vк′″ ) прокаливаются на большую глубину, чем углеродистые. Сильно повышают прокаливаемость марганец, хром, молибден и малые посадки бора (0,003–0,005 %), менее сильно влияют никель и кремний. Прокаливаемость особенно возрастает при одновременном введении в сталь нескольких легирующих элементов.

Устойчивость переохлажденного аустенита повышается, а критическая скорость закалки уменьшается только при том условии, если легирующие элементы растворены в аустените. Если же легирующие элементы находятся в виде избыточных частиц карбидов, то они не повышают устойчивость аустенита и могут ее уменьшить, так как карбиды служат готовыми зародышами, облегчающими распад аустенита. Карбиды титана, ниобия и ванадия при нормально принятом нагреве под закалку обычно не растворяются в аустените и понижают прокаливаемость. Сильно влияет на прокаливаемость величина зерна аустенита. В углеродистой стали при укрупнении зерна от балла 6 до 1–2 глубина закаленного слоя возрастает в 2–3 раза, поэтому повышение температуры и увеличение длительности нагрева повышают прокаливаемость. Легирующие элементы, находящиеся в виде карбидов, не только создают дополнительные центры, способствующие распаду аустенита, но и измельчают его зерно, что также увеличивает критическую скорость закалки и уменьшает прокаливаемость.

Читайте также  Механические свойства стали 12х18н10т

При сквозной закалке свойства стали и, в частности твердость, по всему сечению изделия одинаковы. При несквозной закалке изменение структуры стали по сечению способствует соответствующим изменениям свойств. Распределение твердости по сечению закаленных цилиндров из разных сталей показано на рис.2. При несквозной прокаливаемости твердость падает от поверхности к сердцевине. Из рис.2 видно, что твердость полумартенситной зоны углеродистой стали в данных условиях обработки имеет критический диаметр 25 мм, хромистой 50 мм и хромоникелевой ∼ 125 мм. При несквозной прокаливаемости отпуск при высокой температуре уменьшает различие в твердости и пределе прочности по сечению. Однако предел текучести, ударная вязкость и относительное сужение в сердцевине образца остаются более низкими. Это объясняется разным характером строения ферритно–цементитной структуры. В закаленном слое в результате отпуска мартенсита образуется более дисперсная ферритно–цементитная структура зернистого строения, а в сердцевине она более грубая и имеет пластинчатое строение.


Рис.2. Твердость по сечению стали, содержащей 0,4 % С и 0,85 % Mn (а); 0,4 % С; 0,85 % Mn и 1 % Cr (б); 0,4 % С; 3,5 % Ni и 1,5 % Cr (в)
1 – твердость полумартенситной зоны, HRC

Влияние прокаливаемости на механические свойства можно показать на примере. Заготовки из углеродистой стали с 0,45 % С, диаметром 10 мм, прокаливаются в воде насквозь. После отпуска при 550 °С получается структура – сорбит отпуска. Для такой структуры характерны высокие механические свойства: σ в = 80 кгс/мм 2 ; σ 0,2 = 65 кгс/мм 2 , δ = 16 %; ψ = 50 % и ан = 10 кгс·м/см 2 . При диаметре заготовки 100 мм и закалке в воде скорость охлаждения в сердцевине значительно меньше критической vк, и там образуется структура из пластинчатого перлита и феррита. Эта структура обладает более низкими механическими свойствами: σ в = 70 кгс/мм2; σ 0,2 = 45 кгс/мм 2 ; δ = 13 %; ψ = 40 % и ан = 5 кгс·м/см 2 . Для получения одинаковых и высоких механических свойств по всему сечению во многих случаях необходимо обеспечить в процессе закалки сквозную прокаливаемоеть.

Прокаливаемость углеродистой стали в небольших сечениях (диаметром до 15–20 мм) можно определить по виду излома закаленных образцов. Часто прокаливаемость определяют по кривым распределения твердости по сечению (рис.2). Для этого образец ломают или разрезают и по диаметру сечения определяют твердость.

Прокаливаемость стали в общем случае определяют методом торцовой закалки (ГОСТ 5657–69). Цилиндрический образец определенной формы и размеров (рис.3), нагретый до заданной температуры, охлаждают водой с торца на специальной установке. После охлаждения измеряют твердость по длине (высоте) образца. Так как скорость охлаждения убывает по мере увеличения расстояния от торца, будет уменьшаться и твердость.


Рис.3. Определение прокаливаемости по торцовой пробе:
а – изменение твердости по длине образца после торцовой закалки:
I – твердость полумартенситной зоны; 1 – сталь с низкой прокаливаемостью; 2 – сталь с высокой прокаливаемостью;
б – схема закалки образца

Результаты испытаний выражают графически в координатах твердость – расстояние от охлаждаемого торца. Определив расстояние от торца до участка с твердостью, соответствующей полу мартенситной зоне данной стали, можно по специальным номограммам найти критический диаметр. Чтобы характеристика прокаливаемости стали не была связана с видом охладителя, при использовании номограмм вводят понятие об идеальном критическом диаметре, который является наибольшим диаметром образца, прокаливаемого насквозь, при идеальном охлаждении. Поверхность образца в идеальном охладителе должна мгновенно принимать его температуру, т. е. охлаждение следует проводить с бесконечно большой скоростью. От идеального критического диаметра можно перейти к реальному критическому диаметру, используя номограмму, приведенную на рис.4а. Определим критический диаметр для стали 1 ( рис.3). Для этой стали расстояние от торца до поверхности полумартенситной зоны составляет 10 мм. Для определения критического диаметра на шкале расстояние от закаливаемого торца до полумартенситной зоны (рис.4а) находим деление 10 и опускаем перпендикуляр до пересечения с линией «идеальное охлаждение». От точки а проводим горизонтальную линию влево до пересечения линией заданной охлаждающей среды – вода (точка б) или масло (точка с). От точек б и с опускаем перпендикуляр до шкалы – критический диаметр. Точки с′ и б′ показывают искомый размер критического диаметра.


Рис.4. Определение критического диаметра прокаливаемости стали:
а – номограмма; б — диаграмма

На практике с достаточной точностью критический диаметр может быть определен по графику, представленному на рис.4б. Для этого на оси абсцисс откладывают расстояние от охлаждаемого торца до зоны, имеющей полумартенситную твердость, и восстанавливают перпендикуляр до пересечения с кривой для закалки в масле или воде. Горизонталь, проведенная от этой точки до ординаты, укажет величину Dк. Например, для стали 2 (рис.3) расстояние от торца до зоны с полумартенситной твердостью составляет 19 мм, тогда Dк = 75 мм при закалке в воде и Dк = 50 мм при закалке в масле (рис.4б).

Прокаливаемость даже одной и той же стали может колебаться в значительных пределах в зависимости от изменений химического состава, величины зерна, размера и формы изделия и многих других факторов. В связи с этим прокаливаемость стали каждой марки характеризуют не кривой, а так называемой полосой прокаливаемости, которая не всегда отражает действительную прокаливаемость стали в изделии. Полосы прокаливаемости для углеродистой и легированной сталей, содержащей 0,4 % С, наглядно показывающие влияние легирующих элементов, приведены на рис.5.

Влияние легирующих элементов на прокаливаемость стали

Уважаемые обучающиеся и выпускники (срок окончания обучения 31.08.2021 г.)!

По вопросам заказа справок об обучении и доходах с 09.08.2021 г. обращаться в каб. 141, по телефону 8 (3519) 29-84-17

Обучающиеся, отчисленные до 31.08.2021 г. заказывают справки об обучении в отделе кадров или архивном отделе.

Организация рейтинговой оценки деятельности ППС и учебных структурных подразделений

Уважаемые коллеги!

Согласно приказу от 30.06.2021 № 10-30/382 «Об организации рейтинговой оценки деятельности ППС и учебных структурных подразделений по итогам работы в 2020/2021 уч. году» в период с 01.09.2021 по 07.09.2021 заведующим кафедрами необходимо заполнить и подтвердить соответствующими отчетными документами рейтинг профессорско-преподавательского состава в автоматизированной системе «Рейтинг ППС»

С видео инструкцией по работе в АС «Рейтинг ППС» можно ознакомиться, пройдя по ссылке

По вопросам доступа к системе обращайтесь в УМУ к Колесниковой М.В., тел. 22-10-42.​​

Официальные аккаунты университета в социальных сетях и мессенджерах

Уважаемые друзья, подписывайтесь на официальные аккаунты университета в социальных сетях и мессенджерах. Будьте в курсе всех интересных событий и новостей нашего университета!

  • magtu.ru – официальный сайт МГТУ им. Г.И.Носова
  • vk.com/nmstu – официальная группа МГТУ им. Г.И.Носова в Вконтакте
  • twitter.com/nmstu_live – официальный твиттер–аккаунт Магнитогорского государственного технического университета им. Г.И. Носова
  • facebook.com/nmstu – официальная страница МГТУ им. Г.И.Носова на Фейсбуке
  • instagram.com/nmstu – официальная страница МГТУ им. Г.И.Носова в Инстаграм
  • www.youtube.com/user/magtu74 – официальный канал МГТУ им. Г.И.Носова на Yotube
  • t.me/nmstu_live – официальный телеграм–канал МГТУ им. Г.И.Носова
  • ok.ru/group/62680042438834 – официальная группа МГТУ им. Г.И.Носова в Одноклассниках
  • zen.yandex.ru/id/6128b053ab28f03af4339dba – официальная страница МГТУ им. Г.И.Носова на Яндекс.Дзене

Центр иностранных языков ИДПО «Горизонт» МГТУ им. Г.И. Носова объявляет набор на языковые курсы

Центр иностранных языков ИДПО «Горизонт» МГТУ им. Г.И. Носова объявляет набор на языковые курсы:

Английский язык (A1 Beginner)

Английский язык (А1 Elementary)

Английский язык (А2 Pre-Intermediate)

Английский язык (B1 Intermediate)

Французский язык (А1 Elementary)

в группу Китайского языка (А1 Elementary)

Испанский язык (А1 Elementary)

Подготовка к международным экзаменам (IELTS)

Читайте также  Дымовые трубы для котельных из нержавеющей стали

в группу Немецкого языка

Английский язык для подростков (12-16 лет)

Английский язык для детей (8-11 лет)

Начало занятий: сентябрь 2021 г.

Ждем всех желающих!

Необходимую информацию Вы можете получить по телефонам:

+7 (3519) 22 39 23 (Ольга Александровна)

+7 (919) 406 07 38 (Юлия Александровна)

Приглашаем на II просветительский марафон «Новое знание»

В течение трех дней, с 1 по 3 сентября, российское общество «Знание» проведет II Федеральный просветительский марафон, приуроченный к Всероссийскому дню знаний. Мероприятие пройдет в шести городах России — Москве, Санкт-Петербурге, Нижнем Новгороде, Сочи, Иннополисе и Владивостоке. Все выступления будут сопровождаться интернет-трансляцией на сайте, что позволит каждому желающему из любой точки мира принять участие и получить новые знания.

Участники второго марафона будут обсуждать такие темы, как: история и культура, спорт, наука и технологии, цифровой мир и медиа, бизнес. Речь также пойдет о строительстве «умных» городов будущего, о том, как должна развиваться страна в условиях эпидемических рисков и о новейших достижениях российской науки. В программе мероприятия более ста часов дискуссий, лекций, интервью, открытых уроков и мастер-классов. Гости познакомятся с людьми, которые создают эти достижения, историями их личностного и профессионального развития.

Спикерами марафона «Новое знание» выступят более 150 представителей российского общества и зарубежные гости, добившиеся успеха в различных сферах: выдающиеся деятели науки, культуры, искусства, медицины, государственного управления, а также спортсмены и успешные предприниматели.

Среди выступающих будут министр иностранных дел РФ Сергей Лавров, генеральный директор Первого канала Константин Эрнст, музыкант и продюсер Василий Вакуленко, генеральный директор группы компаний «Яндекс» Аркадий Волож, главный врач городской клинической больницы № 40 в Коммунарке Денис Проценко, генеральный директор «Лаборатории Касперского» Евгений Касперский, трехкратный чемпион мира Александр Овечкин и многие другие.

«КАМПУСНАЯ КАРТА» — НОВАЯ, ВЫГОДНАЯ, ТВОЯ!

Апгрейд «Кампусной карты»: кешбэк за покупки, скидки до 60% в магазинах, льготный проезд и кредитка 10 0 дней без %!

Магнитогорский памятник «Тыл-фронту» может стать «Сокровищем России»

Магнитогорский памятник «Тыл-фронту» может стать «Сокровищем России»

National Geographic Traveler проводит онлайн-голосование, посвященное туристическим возможностям нашей страны. Магнитогорск представлен монументом памяти Великой Отечественной войны — памятником «Тыл-фронту».

Дорогие студенты! Поддержим наш город! Победа в конкурсе позволит представить Магнитогорск как архитектурно-исторический центр с богатым культурным наследием.

КОНКУРС НА ПОВЫШЕННУЮ СТИПЕНДИЮ!

С 16 августа начинается прием документов для участия в конкурсе на право получения повышенной государственной академической стипендии во II полугодии 2021 года.

Рассматриваются достижения студента, полученные за время обучения в ВУЗе и датированные не ранее 1 СЕНТЯБРЯ 2020 ГОДА.
Подача документов на конкурс осуществляется электронным способом через личный кабинет на Образовательном портале МГТУ им. Г.И. Носова с 16 августа по 31 августа 2021 г.
До 31 августа 23:59 студенты могут редактировать свое портфолио, а также получать комментарии по заполнению от ответственных по направлениям деятельности:
Учебная деятельность – Нечкина Екатерина Олеговна, ауд. 141, тел. 29-84-17, ekat.nechkina@yandex.ru;
Научно-исследовательская – Логунова Оксана Сергеевна, ауд. 286, logunova66@mail.ru ;
Иванова Анастасия Викторовна, +7 (951)- 253-10-90, anastasivanova12@gmail.com;
Общественная деятельность – Исмагилова Анастасия Денисовна, ауд. 2102, тел. 22-53-34;
Культурно-творческая деятельность – Шилина Валентина Васильевна, ауд. 091, тел. 29-84-59;
Спортивная деятельность – Кузьмичева Полина Константиновна, Дворец спорта МГТУ 2 этаж, тел. +7 (912) 477-06-17.

Магистры 1 курса, обучающиеся ранее в МГТУ им. Г.И. Носова, для заполнения портфолио вам необходимо обратиться к Рубану Константину Алексеевичу, начальнику УИТ и АСУ, тел. 22-19-05, ruban-k@mail.ru для оперативного создания личного кабинета на Образовательном портале МГТУ им. Г.И. Носова.

Обращаем Ваше внимание, что вся ответственность за заполнение портфолио лежит на конкурсантах, поэтому просим внимательно отнестись к заполнению достижений. Достижения, не соответствующие указанным критериям и не имеющие подтверждающих документов, не оцениваются.

П о вопросам заполнения портфолио обращаться к члену стипендиальной комиссии Исмагиловой Анастасии Денисовне, тел. 22-53-34.

ВЛИЯНИЕ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА КРИТИЧЕСКУЮ СКОРОСТЬ ЗАКАЛКИ И ПРОКАЛИВАЕМОСТЬ СТАЛИ

В начале темы 2.3 отмечалось, что существенным недостатком углероди-стых сталей является их пониженная прокаливаемость. Напомним, прокали-ваемость – это способность стали приобретать мартенситную структуру на определенную глубину при закалке в данном охладителе.

Величину прокаливаемости обычно оценивают критическим диа-метром (Dкр)максимальным диаметром образца, приобретающим мартен-ситную структуру по всему сечению при закалке в данном охладителе.

Поскольку основное требование закалки на мартенсит (см. раздел 2.2.1) Vохл ³ Vкр , то прокаливаемость зависит от соотношения скорости охлажде-ния Vохл и критической скорости закалки Vкр, величина которой определя-ется химическим составом стали.

Очевидно, что скорость охлаждения образца (изделия) уменьшается от поверхности к сердцевине (рис. 2.3.4).

Vохл

Рис. 2.3.4. Распределение скорости охлаждения (Vохл)по се-чению образца при закалке (заштрихована закаленная зона с мартенситной структурой)

Если в сердцевине образца Vохл

женные механические свойства (о чем говорилось в конце темы 2.2.2). Напри-мер, ударная вязкость улучшенной (закалка + высокий отпуск) стали 45 с диа-метром образца 10 мм (сквозная закалка) составляет KCU = 1 МДж/м2, а при Æ = 100 мм (несквозная прокаливаемость) KCU = 0,5 МДж/м2.

Поэтому для ответственных изделий должны применяться стали со

Из рис. 2.3.4 очевидно, что основной путь повышения прокаливаемо-сти – это уменьшение Vкр. В предыдущем разделе (2.3.1.2) говорилось о том, что легирование приводит к смещению линий С- диаграммы вправо (см. рис. 2.3.3), а это означает уменьшение Vкр (напомним, что величина Vкр определяет-ся наклоном касательной к кривой начала распада аустенита на феррито-карбидные смеси, см. стр. 84 ).

Как отмечалось выше, все легирующие элементы (кроме Со) замедляют скорость распада переохлажденного аустенита и соответственно уменьша-ют Vкр, причем тем сильнее, чем больше их количество в стали. Поэтому, чем больше диаметр изделия, тем более легированную сталь нужно применять для получения сквозной прокаливаемости.

Помимо повышения прокаливаемости легирование играет и еще одну важную положительную роль, так как., снижая Vкр, позволяет производить бо-лее «мягкую» закалку по сравнению с углеродистыми (нелегированными )

сталями. Если для получения мартенсита в углеродистых сталях их необходимо охлаждать очень быстро в воде (Vохл » 600 оС/с), то в легированных тот же ре-зультат может быть достигнут при более медленном охлаждении в масле (Vохл»150 оС/с) или даже (для некоторых высоколегированных, например, бы-строрежущих сталей) на воздухе (V охл. » 3…30 оС/с).

Существенное снижение Vохл. при закалке легированных сталей уменьша-

ет опасность возникновения закалочных трещин и коробления изделий.

Справедливости ради остановимся на примере отрицательного влияния легирования, усложняющего технологию термической обработки изделий.

Выше (раздел 2.3.1.2) отмечалось, что подобно углероду все легирующие

элементы (кроме Со и Al) снижают температуру начала (Мн) и конца (Мк) мар-тенситного превращения.

Если в стали данного химического состава температура Мк опускается ниже комнатной, то при закалке (закалочная среда при t = 20 оС) часть аустени-

та сохраняется, не превращаясь в мартенсит, — это «остаточный аустенит». Согласно рис. 2.3.2 он появляется в структуре закаленных углеродистых

сталей, содержащих і 0,5 %С и его количество возрастает с увеличением со-держания углерода (пропорционально заштрихованному на рис. 2.3.2 интервалу ∆t = 20 оС – Мк).

Поскольку легирующие элементы дополнительно снижают Мн и Мк (осо-бенно эффективно Mn, Cr, Ni) то в закаленных легированных сталях сохраняет-ся много остаточного аустенита.

Остаточный аустенит ухудшает механические и эксплуатационные свой-ства изделий, поэтому для его устранения применяют «обработку холодом» -охлаждение изделий сразу после закалки до температур, возможно близких к

Мк. Для этого используют, например, жидкий аммиак (-33 оС), жидкий азот (- 196оС) и другие охлаждающие среды.1

Обработку холодом используют главным образом для деталей типа шес-терен, режущих и измерительных инструментов, изготавливаемых из высоколе-гированных сталей.

Заметим, что в некоторых случаях остаточный аустенит играет положи-тельную роль, уменьшая деформацию изделий при закалке (например, длинно-мерного режущего и измерительного инструмента).