Влияние фосфора на свойства стали

Анализ углерода, серы и фосфора

Сталь — наиболее распространенный сплав железа с углеродом, в который входит ряд неизбежных примесей (Мп, Si, S, Р, О, N, Н и др.). Все они оказывают влияние на свойства стали, поэтому химический анализ — обязательный элемент системы качества на предприятии.

  • Анализ на углерод. Углерод — основной компонент стали, который представлен в ней в разных формах, и определяет его марку и основные свойства.
  • Анализ на серу и фосфор. Сера и фосфор трудноудаляемые элементы, которые попадают при выплавке стали в основном из чугуна. Они считаются вредными примесями, так как ухудшают качество стали. Максимально допустимое содержание серы не более 0,06%, а фосфора — 0,05%. В ходе плавки металла стараются провести мероприятия по десульфурации и дефосфорации, чтобы снизить влияние этих элементов.

Влияние углерода, серы и фосфора на качество стали

Определение углерода, серы и фосфора в стали для металлургов, литейщиков и машиностроителей имеет первоочередную важность. Это позволяет получить качественную продукцию и исключить неисправимый брак. Государственные стандарты регламентируют содержание примесей в стали и методы определения их содержания.

Углерод в стали

Углерод — полиморфный неметаллический элемент, который способен растворяться в железе в жидком и твердом состоянии с образованием твердых растворов — феррита и аустенита. Кроме этого, он создает с железом химическое соединение — цементит (Fe3C), и может быть представлен в высокоуглеродистых сталях в виде графита.

В зависимости от содержания углерода стали классифицируются на:

  • низкоуглеродистые (до 0,3% С);
  • среднеуглеродистые (0,3-0,6% С);
  • высокоуглеродистые (более 0,6% С).

Содержание углерода оказывает влияние на структуру стали, количество и соотношение фаз, поэтому определяет показатели твердости и пластичности металла. При повышении содержания углерода происходит снижение ударной вязкости, и повышается порог хладноломкости. Увеличение концентрации C приводит к изменению и электрических свойств: растет сопротивление и коэрцитивная сила, уменьшается магнитная проницаемость и плотность магнитной индукции.

С ростом углерода происходит ухудшение литейных свойств, обрабатываемость давлением, резанием и свариваемость. Обработка резанием низкоуглеродистых сталей также затрудняется.

Сера в стали

Сера — вредная примесь, основными источниками которой служат передельный чугун и руда, используемые при выплавке стали. Она способна растворяться в жидком железе, а в процессе кристаллизации образует FeS. Сульфид железа образует с железом эвтектику с низкой температурой плавления, которая располагается по границам зерен. При технологическом нагреве до температуры обработки металла давлением она оплавляется, а при деформировании становится причиной надрывов и трещин. Это явление называется красноломкостью, так как сталь при температуре 900-1000℃ становится ярко-красного цвета.

Повышение содержания серы нелинейно влияет на порог хладноломкости: сначала происходит его повышение, а при повышении содержания MnS он понижается. Негативное влияние сера оказывает на свариваемость и коррозионную стойкость.

Фосфор в стали

Фосфор относится к вредным примесям стали, источником которой служат шихтовые материалы, в основном — чугун. Он способен в значительных количествах растворяться в феррите, что приводит к искажению кристаллической решетки. Одновременно с этим происходит увеличение временного сопротивления и предела текучести, уменьшение пластичности и вязкости. Увеличение содержания фосфора становится причиной повышения порога хладноломкости и уменьшения работы развития трещины.

Фосфор в значительной мере подвержен ликвации, что приводит к резкому снижению вязкости в центральной части слитка. В настоящее время технологии глубокой очистки стали от фосфора не существует.

Оптико-эмиссионный спектральный анализ C, S, P.

Оптико-эмиссионные спектрометры — универсальные приборы, которые способны решать широкий круг аналитических задач. В основу их работы лежат принципы атомно-эмиссионного спектрального анализа элементного состава вещества:

  • спектр возбужденных атомов и ионов индивидуален для каждого элемента;
  • интенсивность спектральной линии находится в зависимости от концентрации элемента в исследуемой пробе.

Эмиссионные спектральные приборы находят широкое применение в металлургии, что обусловлено следующими преимуществами метода:

  • Возможность исследования проб в различном агрегатном состоянии.
  • Анализ носит неразрушающий характер.
  • Количество исследуемых элементов практически не ограничено. В их число входят углерод, сера и фосфор, которые представляют особый интерес для металлургов.
  • Для проведения исследования в качестве пробы достаточно малого количества вещества.
  • Высокая чувствительность и точность.
  • Экспрессность.
  • Возможность проведения сертификационного анализа.

Для анализа углерода, серы и фосфора с использованием эмиссионных спектрометров должны быть созданы в приборе определенные условия, а именно: бескислородная атмосфера. В противном случае определить элементы, длина волны которых короче 185 нм, не представляется возможным. В настоящее время удаление кислорода в приборе осуществляется двумя способами:

  • путем прокачки инертным газом;
  • вакуумированием.

Каждая из систем декислородизации имеет определенные особенности эксплуатации и обслуживания, поэтому при выборе прибора для анализа углерода, серы и фосфора следует учитывать их преимущества и недостатки. Это позволит подобрать спектрометр, который оптимально соответствует аналитической задаче, требованиям к точности результатов исследований и имеет удовлетворительные экономические показатели.

Оптико-эмиссионные приборы, предусматривающие прокачку инертным газом

В спектральных приборах для декислородизации используют чаще всего аргон. Для удаления кислорода предусматривается одна из следующих систем:

  • Открытая. В результате продувки происходит вытеснение кислорода, а инертный газ удаляется из прибора в окружающую атмосферу.
  • Замкнутая. При прохождении инертного газа происходит захват кислорода, который в дальнейшем очищается с помощью фильтра. Газ продолжает движение по замкнутой системе, давление в которой обеспечивает насос.

Приборы с открытой системой декислородизации отличаются простотой конструкции и меньшей стоимостью. Однако в этом случае степень очистки находится на низком уровне, а аргон расходуется безвозвратно. Применение подобных спектрометров целесообразно при пониженных требованиях к аналитическим характеристикам, как со стороны потребителя, так и со стороны производителя.

Конструкция приборов с замкнутой системой декислодизации усложняется, так как для обеспечения функциональности необходимы дополнительные компоненты и их обслуживание:

  • Насос с блоком питания.
  • Баллон с газом для компенсации потерь.
  • Дополнительный фильтрующий элемент.

Каждый из этих компонентов прибора требует обслуживания, а расходные материалы — замены, что связано с дополнительными расходами. Кроме этого, в результате непрофессиональных действий обслуживающего персонала возникает риск завоздушить систему при замене фильтра. Ликвидация последствий этого требует не только с дополнительных материальных затрат, но и времени.

Оптико-эмиссионные приборы с системой вакуумирования

Система вакуумирования позволяет получить низкую остаточную концентрацию кислорода, которая во много раз ниже, чем в открытой системе декислородизации, и сопоставима с лучшими результатами, полученными в замкнутых. Следует отметить, что при этом нет необходимости использования инертного газа.

Такая система удаления кислорода применяется в наиболее совершенных спектральных приборах. В них установлен масляный насос, который дополняется специальными ловушками для масла. Кроме этого, предусмотрен клапан, который при аварийном отключении электропитания, не допускает повреждения спектрометра маслом в результате его проникновения в вакуумную магистраль.

Двухступенчатые масляные форвакуумные насосы — наиболее предпочтительное оборудование по сравнению безмасляными мембранными моделями. Они имеют сопоставимую стоимость, но при этом в десятки раз превосходят последние по степени удаления кислорода, а также обладают значительным ресурсом и намного проще в обслуживании.

Универсальные настольные и стационарные спектрометры Искролайн 100/300 — отличные образцы приборов, в которых для удаление кислорода реализована система вакуумирования. Они способны определять более 70 элементов, в число которых входят углерод, сера и фосфор, с пределом детектирования до 0,0001% Приборы позволяют быстро и точно проводить спектральный анализ сталей, и отличаются высоким спектральным разрешением, высокой сходимостью результатов измерений и высоким качеством изготовления.

Читайте также  Марка электродов для сварки нержавеющей стали

Исследование влияния повышенного содержания фосфора на свойства малоуглеродистой стали Текст научной статьи по специальности « Технологии материалов»

Аннотация научной статьи по технологиям материалов, автор научной работы — Филиппов Г. С., Коршунова Т. Е.

Приведены результаты исследования малоуглеродистой стали с необычно высоким содержанием фосфора (0,42 %) на образце, вырезан-ном из строительной конструкции старинного здания, сохранившей свою работоспособность и долговечность до настоящего времени.

Похожие темы научных работ по технологиям материалов , автор научной работы — Филиппов Г. С., Коршунова Т. Е.

Текст научной работы на тему «Исследование влияния повышенного содержания фосфора на свойства малоуглеродистой стали»

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПОВЫШЕННОГО СОДЕРЖАНИЯ ФОСФОРА НА СВОЙСТВА МАЛОУГЛЕРОДИСТОЙ СТАЛИ

Г.С. Филиппов; Т.Е. Коршунова, Дальрыбвтуз, Владивосток

Приведены результаты исследования малоуглеродистой стали с необычно высоким содержанием фосфора (0,42 %) на образце, вырезанном из строительной конструкции старинного здания, сохранившей свою работоспособность и долговечность до настоящего времени.

Объектом исследования являлся образец стали, взятый из фермы потолочного перекрытия здания Филармонии г. Владивостока, построенного в период с 1902 по 1906 гг. Стальные конструкции и изделия для этого строительства, согласно данным Приморского Отделения Русского Географического Общества, поставлялись из Германии.

Поводом к проведению исследования послужили хорошо сохранившийся внешний вид и долговечность конструкции спустя практически столетие. Химический анализ и испытания механических свойств стали дали довольно любопытные результаты — при необычно высоком содержании фосфора (0,42 %) и низком — углерода (0,02 %), характеристики прочности и пластичности оставались достаточно высокими (табл. 1, 2).

Полученные результаты мы сравнили с наиболее приближенной по содержанию фосфора современной сталью марки 10ХНДП, применяемой для изготовления подобных конструкций (табл. 1, 2). Сравнительный анализ показал, что механические свойства стали 10ХНДП несколько выше, что вероятнее всего объясняется ее легированием, а содержание углерода более высокое при гораздо меньшем количестве фосфора.

Химический состав сплавов

Сплав Химические элементы, %

С Р в в1 Мп Сг N11 Си

Исследуем ый 0,0 2 0,4 2 0,0 26 0,2 8 не т не т не т —

10ХНДП 20, 12 0,0 7-0,12 20, 040 0,1 7-0,37 0,3 -0,6 0,5 -0,8 0,3 -0,6 0,3 -0,5

Механические свойства сплавов

Ов 1 От ¿5 1 ¿10 НВ

Исследуемый 34 25,5 9,8 7,5 137

10ХНДП (прокат) 48 35 20 — —

В Германии, откуда была поставлена сталь, в начале ХХ в. до настоящего времени и особенно до 40-х гг., чугун переделывали в сталь томасовским способом, где фосфористые железорудные месторождения являются основными внутренними ресурсами металлургии, но и в начале века томасовский способ позволял производить сталь с гораздо меньшим содержанием фосфора. Поэтому мы поставили цель, выяснить причины изготовления и использования стали со столь необычным химическим составом.

Общеизвестно, что в сплавах железа неизменно находятся примеси, в том числе и вредные примеси серы, азота, фосфора, которые снижают качество стали, в связи с этим уменьшение содержания вредных примесей при ее выплавке является одной из основных задач современной металлургии. Однако полученные нами данные по механическим свойствам позволили предположить о положительной роли фосфора в малоуглеродистых сталях. Проведенный анализ научных изысканий в этой области частично подтвердил наши предположения.

Вредное влияние фосфора объясняется тем, что он сам по себе плохо диффундирующий, в присутствии углерода еще менее способен диффундировать в решетке твердого раствора железа даже при длительном отжиге. Углерод при этом стремится в места, обедненные фосфором, в результате чего при повышенном содержании фосфора и углерода ликвационные участки, обогащенные фосфором, сохраняются, способствуя хладноломкости стали. Кроме того, вследствие ликвации при содержании фосфора в количестве нескольких десятых долей процента, углерод вызывает выделение хрупкого фосфида в виде оболочек вокруг зерен или округлостей внутри или поперек зерен феррита [1, 2].

Сильная ликвация в сталях с повышенным содержанием фосфора (до 0,2-0,6 %) вызывает образование крупнозернистой или разнозеренной структуры (участки с крупным зерном обогащены фосфором, а с мелким — обеднены), что также ведет к хладноломкости. Безуглеродистые стали (С Надоели баннеры? Вы всегда можете отключить рекламу.

Примеси в сталях: вредные и полезные

Примеси: постоянные, скрытые и случайные

Марганец, кремний, алюминий, серу и фосфор относят к постоянным примесям. Алюминий вместе с марганцем и кремнием применяется в качестве раскислителя и поэтому в малых количествах они всегда есть в раскисленных сталях. Руды железа, а также топливо и флюсы всегда содержат определенное количество фосфора и серы, которые остаются в чугуне, а затем переходят и в сталь.

Азот называют скрытой примесью – он поступает в сталь в основном из воздуха.

К случайным примесям относят медь, мышьяк, олово, цинк, сурьму, свинец и другие элементы. Они попадают в сталь с шихтой – с рудами из различных месторождений, а также из железного лома.

Все примеси – постоянные, скрытые и случайные – в разной степени являются неизбежными из-за технологии производства стали. Так, спокойная сталь обычно содержит эти примеси в следующих пределах: 0,3-0,7 % марганца; 0,2-0,4 % кремния; 0,01-0,02 % алюминия; 0,01-0,05 % фосфора, 0,01-0,04 % серы, 0,-0,2 % меди. В этих количествах эти элементы рассматривают как примеси, а в бóльших количествах, которые вносят в стали намеренно, их уже считают легирующими элементами.

Влияние фосфора на свойства сталей

Фосфор (Р) сегрегирует при затвердевании стали, но в меньшей степени, чем углерод и сера. Фосфор растворяется в феррите и за счет этого повышает прочность сталей. С увеличением содержания фосфора в сталях их пластичность и ударная вязкость снижается и повышается склонность к хладноломкости.

Растворимость фосфора при высокой температуре достигает 1,2 %. С понижением температуры растворимость фосфора в железе резко падает до 0,02-0,03 %. Такое количество фосфора характерно для для сталей, то есть весь фосфор обычно растворен в альфа-железе.

Фосфор имеет сильную тенденцию сегрегировать на границах зерен, что приводит к отпускной хрупкости легированных сталей, особенно в марганцевых, хромистых, магниево-кремниевых, хромоникелевых и хромомарганцевых сталях. Фосфор, кроме того, увеличивает упрочняемость сталей и замедляет, как и кремний, распад мартенсита в сталях.

Повышенное содержание фосфора часто задают в низколегированных сталях для улучшения их механической обработки, особенно автоматической.

В низколегированных конструкционных сталях с содержанием углерода около 0,1 % фосфор повышает прочность и сопротивление атмосферной коррозии.

В аустенитных хромоникелевых сталях добавки фосфора способствуют повышению предела текучести. В сильных окислителях наличие фосфора в аустенитных нержавеющих сталях может приводить к их коррозии по границам зерен. Это обусловлено явлением сегрегации фосфора по границам зерен.

Влияние серы на свойства сталей

Содержание серы (S) в высококачественных сталях не превышает 0,02-0,03 %. В сталях общего назначения допустимое содержание серы выше – 0,03-0,04 %. Специальной обработкой жидкой стали содержание серы в стали доводят до 0,005 %.

Сера не растворяется в железе, поэтому любое ее количество образует с железом сульфид железа FeS. Этот сульфид входит в состав эвтектики, которая образуется при 988 °С.

Читайте также  Площадка текучести стали

Повышенное содержание серы в сталях приводит к их красноломкости из-за низкоплавких сульфидных эвтектик, которые возникают по границам зерен. Явление красноломкости происходит при температуре 800 °С, то есть при температуре красного каления стали.

Сера оказывает вредное влияние на пластичность, ударную вязкость, свариваемость и качество поверхности сталей (особенно в сталях с низким содержанием углерода и марганца).

Сера имеет очень сильную склонность к сегрегации по границам зерен. Это приводит к снижению пластичности сталей в горячем состоянии. Однако серу в количестве от 0,08 до 0,33 % намеренно добавляют в стали для автоматической механической обработки. Известно, что присутствие серы повышает усталостную прочность подшипниковых сталей.

Присутствие в стали марганца уменьшает вредное влияние серы. В жидкой стали протекает реакция образования сульфида марганца. Этот сульфид плавится при 1620 °С – при температурах значительно более высоких, чем температура горячей обработки сталей. Сульфиды марганца пластичны при температурах горячей обработки сталей (800-1200°С) и поэтому легко деформируются.

Влияние алюминия на свойства сталей

Алюминий (Al) широко применяется для раскисления жидкой стали, а также для измельчения зерна стальных слитков. К вредному влиянию алюминия относят то, что он способствует графитизации сталей. Хотя алюминий часто считают примесью, его активно применяют и как легирующий элемент. Поскольку алюминий образует с азотом твердые нитриды, он обычно бывает легирующим элементом в азотируемых сталях. Алюминий повышает стойкость сталей к окалинообразованию, и поэтому его добавляют в теплостойкие стали и сплавы. В дисперсионно упрочняемых нержавеющих сталях алюминий применяют как легирующий элемент, ускоряющий реакцию дисперсионного выделения. Алюминий повышает коррозионную стойкость низкоуглеродистых сталей. Из всех легирующих элементов алюминий является наиболее эффективным для контроля роста зерна при нагреве сталей под закалку.

Влияние азота на свойства сталей

Вредное влияние азота (N) заключается в том, что образуемые им довольно крупные, хрупкие неметаллические включения – нитриды – ухудшают свойства стали. Положительным свойством азота считают то, что он способен расширять аустенитную область диаграммы состояния сталей. Азот стабилизирует аустенитную структуру и частично заменяет никель в аустенитных сталях. В низколегированные стали добавляют нитридообразующие элементы ванадий, ниобий и титан. При контролируемой горячей обработке и охлаждении они образуют мелкие нитриды и карбонитриды, которые значительно повышают прочность стали.

Влияние меди на свойства сталей

Медь (Cu) имеет умеренную склонность к сегрегации. К вредному влиянию меди относят снижение хладноломкости стали. При повышенном содержании меди она отрицательно влияет качество поверхности стали при ее горячей обработке. Однако при содержании более 0,20 % медь повышает ее стойкость к атмосферной коррозии, а также прочностные свойства легированных и низколегированных сталей. Медь в количестве более 1 % повышает стойкость аустенитных нержавеющих сталей к воздействию серной и соляной кислот, а также их стойкость к коррозии под напряжением.

Влияние олова на свойства сталей

Олово (Sn) уже в относительно малых количествах является вредным для сталей. Оно имеет очень сильную склонность сегрегировать к границам зерен и вызывать отпускную хрупкость в легированных сталях. Олово оказывает вредное влияние на качество поверхности непрерывнолитых слитков, а также может снижать горячую пластичность сталей в аустенитно-ферритной области диаграммы состояния.

Влияние сурьмы на свойства сталей

Сурьма (Sb) имеет сильную склонность сегрегировать при затвердевании стали и поэтому вредно влияет на качество поверхности непрерывнолитых стальных слитков. В твердом состоянии стали сурьма охотно сегрегирует к границам зерен и вызывает отпускную хрупкость легированных сталей.

Влияние химического состава на механические свойства стали

Каждый химический элемент, входящий в состав стали, по-своему влияет на ее механические свойства – улучшает или ухудшает.

Углерод (С), являющийся обязательным элементом и находящимся в стали обычно в виде химического соединения Fe3C (карбид железа), с увеличением его содержания до 1,2% повышает твердость, прочность и упругость стали и уменьшает вязкость и способность к свариваемости. При этом также ухудшаются обрабатываемость и свариваемость.

Кремний (Si) считается полезной примесью, и вводится в качестве активного раскислителя. Как правило, он содержится в стали в небольшом количестве (в пределах до 0,4%) и заметного влияния на ее свойства не оказывает. Но при содержании кремния более 2% сталь становится хрупкой и при ковке разрушается.

Марганец (Mn) содержится в обыкновенной углеродистой стали в небольшом количестве (0,3-0,8%) и серьезного влияния на ее свойства не оказывает. Марганец уменьшает вредное влияние кислорода и серы, повышает твердость и прочность стали, ее режущие свойства, увеличивает прокаливаемость, но снижает стойкость к ударным нагрузкам.

Сера (S) и фосфор (Р) являются вредными примесями. Их содержание даже в незначительных количествах оказывает вредное влияние на механические свойства стали. Содержание в стали более 0,045% серы делает сталь красноломкой, т.е. такой, которая при ковке в нагретом состоянии дает трещины. От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды (MnS). Содержание в стали более 0,045% фосфора, делает сталь хладноломкой, т.е. легко ломающейся в холодном состоянии. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

Ниобий (Nb) улучшает кислостойкость стали и способствует уменьшению коррозии в сварных конструкциях.

Титан (Тi) повышает прочность, плотность и пластичность стали, улучшает обрабатываемость и сопротивление коррозии. Повышает прокаливаемость стали при малых содержаниях и понижает при больших.

Хром (Cr) повышает прочность, закаливаемость и жаростойкость, режущие свойства и стойкость на истирание, но снижает вязкость и теплопроводность стали. Содержание большого количества хрома (в обычных сортах стали доходит до 2%, а в специальных — до 25%) делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Молибден (Mo) повышает прочностные характеристики стали, увеличивает твердость, красностойкость, антикоррозионные свойства. Делает ее теплоустойчивой, увеличивает несущую способность конструкций при ударных нагрузках и высоких температурах. Затрудняет сварку, так как активно окисляется и выгорает.

Никель (Ni) увеличивает вязкость, прочность и упругость, но несколько снижает теплопроводность стали. Никелевые стали хорошо куются. Значительное содержание никеля делает сталь немагнитной, коррозионностойкой и жаропрочной.

Вольфрам (W) образуя в стали твердые химические соединения – карбиды, резко увеличивает твердость и красностойкость. Увеличивает работоспособность стали при высоких температурах, ее прокаливаемость, повышает сопротивление стали к коррозии и истиранию, уменьшает свариваемость.

Ванадий (V) обеспечивает мелкозернистость стали, повышает твердость и прочность. Увеличивает плотность стали, так как является хорошим раскислителем. Снижает чувствительность стали к перегреву и улучшает свариваемость.

Кобальт (Co) повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Алюминий (Аl) является активным раскислителем. Делает сталь мелкозернистой, однородной по химическому составу, предотвращает старение, улучшает штампуемость, повышает твердость и прочность, увеличивает сопротивление окислению при высоких температурах.

Медь (Cu) влияет на повышение коррозионной стойкости, предела текучести и прокаливаемости. На свариваемость не влияет.

Для всестороннего понимания и анализа процессов, происходящих при легировании и деформировании сталей, важную роль играет знание зависимостей между химическим составом и механическими свойствами.

Целью настоящих исследований является изучение комплексного влияния химического состава на предел текучести σТ арматурной стали класса А500С.

Читайте также  Оксидирование нержавеющей стали

В течение сентября и октября текущего года в Лаборатории испытаний строительных материалов и конструкций ГБУ «ЦЭИИС» проводились испытания образцов арматурных стержней диаметром от Ø16 до Ø36. Были выполнены более 30 параллельных испытаний. При этом для одной и той же пробы данного типоразмера арматурных стержней определяли фактическую массовую долю химических элементов с помощью оптико-эмиссионного спектрометра PMI-MASTER SORT (рис.1) и механические свойства стали при помощи испытательной машины ИР-1000М-авто (рис.2).

Рис.1 — Испытание арматурного стержня для определения химического состава стали.

Рис.2 — Испытания арматурной стали на растяжение.

Для обеспечения достоверности статистических выводов и содержательной интерпретации результатов исследований сначала определили необходимый объем выборки, т.е. минимальное количество параллельных испытаний. Так как в данном случае испытания проводятся для оценки математического ожидания, то при нормальном распределении исследуемой величины минимально необходимый объем испытаний можно найти из соотношения:

где υ – выборочный коэффициент вариации,

tα,k – коэффициент Стьюдента,

α=1-P – уровень значимости (Р — доверительная вероятность),

k = n-1 – число степеней свободы,

ΔМ – максимальная относительная ошибка (допуск) при оценке математического ожидания в долях математического ожидания (ΔМ = γ*δМ, где γ — генеральный коэффициент вариации, δМ – максимальная ошибка при оценке математического ожидания в долях среднеквадратического отклонения).

Как правило, генеральный коэффициент вариации γ неизвестен, и его заменяют выборочным коэффициентом вариации υ, для определения которого нами была проведена серия из десяти предварительных испытаний.

По результатам проведенных испытаний и выполненных расчетов при доверительной вероятности Р=0,95 получен необходимый объем выборки, равной n=26. Фактическое количество испытаний, как было сказано выше, составило 36.

Массив данных, полученных по результатам проведенных параллельных испытаний, был обработан с помощью многофакторного корреляционного анализа.

Уравнение множественной регрессии может быть представлено в виде:

Y = f (β, X) + ε,

где X=(X1, X2,…, Xm) – вектор независимых (исходных) переменных; β – вектор параметров (подлежащих определению); ε – случайная ошибка (отклонение); Y – зависимая (расчетная) переменная.

Разработка множественной корреляционной модели всегда сопряжена с отбором существенных факторов, оказывающих наибольшее влияние на признак-результат. В нашем случае из дальнейшего рассмотрения были исключены три элемента (Аl, Тi, W) по причине их низкой массовой доли (

Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter

Учебные материалы

Содержание постоянных примесей обычно ограничивается следующими верхними пределами: 0,8 % Мn; 0,5 % Si; 0,05 % Р; 0,05 % S. При большем их содержании сталь следует относить к легированным, куда эти элементы введены специально.

Марганец

Его вводят в любую сталь для раскисления:

FeO + Mn -> MnO +Fe,

т.е. для устранения оксида железа. Марганец хорошо растворяется в феррите и цементите. Он повышает прочность стали, практически не снижая пластичности, резко уменьшает красноломкость, т.е. хрупкость при высоких температурах вызванную влиянием серы.

Кремний

Его вводят в сталь для раскисления:

2FeO + Si -> 2Fe + SiO2.

Кремний полностью растворим в феррите; сильно повышает предел текучести стали, что снижает способность стали к пластической деформации. В сталях, предназначенных для холодной штамповки, вытяжки, содержание кремния должно быть минимальное.

Фосфор

Железные руды, топливо, флюсы содержат какое-то количество фосфора, которое в процессе производства чугуна остается в нем в той или иной степени и затем переходит в сталь. Фосфор хорошо растворяется в феррите и аустените, а при высоком содержании образует фосфид Fe3Р (15,62 % Р). Растворяясь в феррите, фосфор искажает кристаллическую решетку и увеличивает пределы прочности и текучести стали, сильно уменьшает пластичность и вязкость; каждые 0,01 % Р повышают порог хладноломкости на 20…25 0 С. Фосфор является вредной примесью в сталях.

Как и фосфор, сера попадает в металл из руд, а также из печных газов — продукт горения топлива (SO2). Сера весьма ограниченно растворима в феррите, и практически любое ее количество образует с железом сернистое соединение — сульфид железа FeS, который входит в состав эвтектики, имеющей температуру плавления 988 0 С. Она располагается преимущественно по границам зерен. При нагреве стали до температуры прокатки, ковки (1000…1200 0 С) эвтектика расплавляется, нарушая связь между зернами. В процессе деформации в этих местах образуются надрывы и трещины. Это явление носит название красноломкости. Введение марганца в сталь уменьшает вредное влияние серы, так как при введении его в жидкую сталь идет образование сульфида марганца, имеющего температуру плавления

FeS + Mn -> MnS + Fe.

Частицы MnS располагаются в виде отдельных включений и при деформации вытягиваются в строчки вдоль прокатки.

Сернистые соединения сильно снижают механические свойства стали при статическом и циклическом нагружении, особенно вязкость, пластичность, предел выносливости. Сера является вредной примесью в сталях.

Азот и кислород

Содержатся в стали в небольших количествах, зависящих от способа производства. Они могут в газообразном состоянии находиться в различных несплошностях , в a-твердом растворе, присутствовать в стали в виде хрупких неметаллических включений: оксидов (FeO, SiO2, Al2O3 и др.) нитридов (Fe2N, Fe4N, Mn4N и др.). Азот, кислород и их соединения резко повышают порог хладноломкости, уменьшают ударную вязкость, понижают сопротивление хрупкому разрушению.

Водород

С железом гидридов не образует. Поглощенный при выплавке водород не только охрупчивает сталь, но приводит к образованию флокенов- тонких трещин овальной или округлой формы. Кроме того, водород в металл может попасть в процессе нанесения гальванических покрытий, сварке, при контакте с водородсодержащими средами. Для снижения водородной хрупкости (удаления водорода) металл нагревается до 150…180 0 С, желательно в вакууме при давлении порядка 10 -2 …10 -3 мм рт. ст.

Улучшение качества стали

Для удаления из жидкой стали растворенных в ней газов и неметаллических включений применяют ее вакуумную обработку. Для этого ковш с жидкой сталью помещают в герметически закрытую камеру, где создается разряжение 267…667 Па (2…5 мм рт. ст.). Бурно выделяющиеся газы увлекают с собой и выносят из металла неметаллические включения. В течение 10…15 минут количество растворенных газов уменьшается в 3…5 раз, количество неметаллических включений- в 2…3 раза.

Для защиты металла от окисления разливку стали ведут в инертной атмосфере, например, аргона, под слоем синтетического шлака. Для получения сталей особо высокого качества применяют электрошлаковый переплав (ЭШП), плазменнодуговой переплав, электроннолучевой переплав, электродуговой вакуумный переплав. Металл хорошо очищается (рафинируется) от газов и неметаллических включений обработкой шлаком и направленной кристаллизацией жидкого расплава, созданием глубокого вакуума.

Уважаемые студенты!
Специалисты нашего сайта готовы оказать помощь в учёбе по разным предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах