Отпускная хрупкость стали

Обратимая отпускная хрупкость стали и сплавов железа

Глава I. ЗАКОНОМЕРНОСТИ ОБРАТИМОЙ ОТПУСКНОЙ ХРУПКОСТИ

  1. ПРОЯВЛЕНИЯ И КАЧЕСТВЕННЫЕ ПРИЗНАКИ ОТПУСКНОЙ ХРУПКОСТИ

Отпускной хрупкостью стали и сплавов железа называют происходя­щее в результате пребывания стали (закаленной, или высокоотпущенной, или даже отожженной) в температурном интервале 600—400°С снижение прочности межзеренной связи, которое обнаруживается обычно по повышению температуры хрупковязкого перехода, сопровождае­мому увеличением доли межзеренного разрушения в хрупкой состав­ляющей излома. Хрупкость этого вида называют обратимой, посколь­ку при нагреве стали в состоянии отпускной хрупкости до температур выше интервала охрупчивания хрупкость может многократно устра­няться и возникать вновь при последующей выдержке или медленном охлаждении в опасном интервале температур.

Первоначально отпускная хрупкость была обнаружена при отпуске сталей. Но, как ясно сейчас, термин «отпускная» не соответствует фи­зической сущности явления, поскольку развитие отпускной хрупкости вовсе не обусловлено процессом отпуска продуктов закалки: отпуск­ная хрупкость вполне отчетливо развивается в сталях, предварительно стабилизированных после закалки длительным высоким отпуском или отожженных, не сопровождаясь какими либо изменениями суб- и мик­роструктуры [1—3].

Термические условия развития отпускной хрупкости обусловливают большое практическое значение этого явления. Многие крупногабарит­ные массивные детали из легированных сталей во избежание возникно­вения неблагоприятных внутренних термических напряжений охлажда­ют после высокого отпуска с очень низкой скоростью, и поэтому они длительное время (десятки или даже сотни часов) находятся в опасном диапазоне температур 600-400°С. Кроме того, температуры, при кото­рых эти изделия эксплуатируют, также могут попадать в опасный ин­тервал, что с течением времени будет приводить к охрупчиванию стали и снижению сопротивления детали и конструкции в целом. Наблюдае­мое в результате охрупчивания при замедленном охлаждении и при длительных изотермических выдержках повышение температуры хруп­ко-вязкого перехода стали может достигать сотен градусов [1,4, 5]. Так, при снижении скорости охлаждения после выского отпуска до 2,5—5°С/ч (рис. 1) температура хрупко-вязкого перехода промышлен­ной плавки роторной стали типа 25ХНЗМФА повышается на 80—90°С [2], а для промышленной плавки дисковой стали типа 35ХН4МА значе­ние ΔΓκ при таких скоростях охлаждения составило 200—230°С [4]. В процессе длительной (3—5 тысяч ч) изотермической выдержки при 450—480°С (рис. 2) критическая температура хрупкости сталей типа

15ХНЗМФА [2], 35ХНЗМФ [5], 20Х2М [6] повышается на 120-200°С. С увеличением длительности изотермического охрупчивания при 450°С до 35000 ч повышение критической температуры хрупкости достигает для стали типа 35ХНЗМФА, предварительно закаленной и отпущенной на предел текучести около 10 3 МПа, 530°С [5].

Иногда разделяют понятия отпускной и тепловой хрупкости, пони­мая под тепловой, в отличие от отпускной, хрупкость, возникающую в условиях эксплуатации стали под влиянием длительных выдержек при температурах, лежащих ниже температур появления отпускной хрупко­сти.

Однако многие внешние проявления обоих видов хрупкости и фак­торы, их вызывающие, практически идентичны, особенно если прочно­стные свойства и структура стали предварительно стабилизированы вы­соким отпуском достаточной продолжительности, и не изменяютcя в процессе пребывания стали при более низких температурах. Поэтому часто оба вида охрупчивания рассматривают как одно явление, имею­щее общие основные признаки, качественно характеризующее охрупченное состояние стали и процесс охрупчивания и отличающие его от других видов хрупкости. Известны следующие общие признаки, харак­терные как для отпускном, так и для тепловой хрупкости:

1) температурные условия развития хрупкости (кажущиеся отличия в критических температурных интервалах обусловлены длительностью охрупчивающего воздействия) ;

2) обратимость — возможность устранения хрупкости и повторного охрупчивания без изменения других свойств;

3) отсутствие изменений почти всех физических и механических свойств, кроме склонности стали к хрупкому разрушению;

4) увеличение доли межзеренного разрушения в хрупкой составляю­щей излома;

5) усиление травимости границ зерен специальными травителями при неизменной микроструктуре.

К общим признакам можно отнести также обнаруженную и иссле­дованную в последние годы, благодаря в основном развитию Оже-электронной спектроскопии, зернограничную сегрегацию ряда примес­ных и легирующих элементов [5, 7, 8], развивающуюся как при от­пускной, так и при тепловой хрупкости.

В связи с этим в большинстве опубликованных в последние годы работ, посвященных изучению хрупкости (возникающей как при за­медленном охлаждении после высокого отпуска, так и при длительных выдержках в этом же интервале температур) оба вида охрупчивания определяют одним термином — обратимая отпускная хрупкость.

Рассмотрим основные внешние проявления обратимой отпускной хрупкости.

Температурные условия развития хрупкости

Обратимая отпускная хрупкость развивается в определенных тем­пературных условиях, причем кинетика охрупчивания зависит от тем­пературы. Температурный интервал, в котором развивается обрати­мая отпускная хрупкость, в свою очередь, зависит от длительности процесса охрупчивания, снижаясь с увеличением продолжительности термического воздействия [9, 10]. Как правило, нижняя граница тем­пературного интервала развития обратимой отпускной хрупкости низ­колегированных сталей лежит около 400—500°С, причем при достаточ­но длительных выдержках охрупчивание вблизи нижней границы мо­жет быть значительным. Так, выдержка закаленной и высокоотпущенной стали типа 35ХНЗМФ в течение 3500 ч при 400°С приводит к по­вышению температуры хрупко-вязкого перехода на 110°С [5] при на­личии основных признаков обратимой отпускной хрупкости: полно­стью межзеренного излома в условиях хрупкого разрушения, обога­щения границ зерен примесями и т.д.

Температурный интервал возникновения обратимой отпускной хруп­кости со стороны своей нижней границы может несколько перекры­ваться с интервалом развития необратимой отпускной хрупкости, или (как ее часто называют в зарубежной литературе) хрупкости отпущен­ного мартенсита (250-400°С). Однако, если сталь стабилизирована до­статочно длительным высоким отпуском, то необратимая отпускная хрупкость, связанная с распадом мартенсита [273], не возникает, и нижняя граница температур, при которых развивается охрупчивание, действительно, характеризует температурный интервал обратимой от­пускной хрупкости.

Отпускная хрупкость

Отпускная хрупкость присуща многим сталям. Сталь в состоянии отпускной хрупкости характеризуется низкой ударной вязкостью. На других механических свойствах при комнатной температуре состояние отпускной хрупкости практически не сказывается.

На рисунке схематично показано влияние температуры отпуска на ударную вязкость легированной стали, в сильной степени склонной к отпускной хрупкости. Во многих легированных сталях наблюдаются два температурных интервала отпускной хрупкости. При отпуске в интервале 250 — 400 °С возникает необратимая, а в интервале 450 — 650 °С — обратимая отпускная хрупкость.

Влияние температуры отпуска на ударную вязкость стали

Влияние температуры отпуска на ударную вязкость стали с высокой склонностью к отпускной хрупкости (схема):

1 — быстрое охлаждение в воде или масле;
2 — медленное охлаждение на воздухе или с печью.

Ударная вязкость закаленной стали после отпуска в интервале 250 — 400 °С меньше, чем после отпуска при температурах ниже 250 °С. Если хрупкую сталь, отпущенную при 250 — 400 °С, нагреть выше 400 °С и перевести в вязкое состояние, то повторный отпуск в интервале 250 — 400 °С не возвращает сталь в хрупкое состояние. Скорость охлаждения с температур отпуска в интервале 250 — 400 °С не влияет на ударную вязкость.

Сталь в состоянии необратимой отпускной хрупкости имеет блестящий межкристаллитный излом по границам бывших аустенитных зерен. Эта хрупкость свойственна в той или иной мере всем сталям, в том числе и углеродистым. Поэтому средний отпуск стали, как правило, не используют, хотя он и обеспечивает высокий предел текучести.

Причиной необратимой отпускной хрупкости считают карбидообразование при распаде мартенсита, в частности выделение карбида в виде пленки по границам зерен. Эта пленка при более высоких температурах отпуска исчезает, а при повторном нагреве до 250 — 400 °С не восстанавливается. Кремний в малолегированных сталях, задерживая распад мартенсита, устраняет необратимую отпускную хрупкость.

Ударная вязкость многих сортов легированной стали после высокого отпуска при 450 — 650 °С зависит от скорости охлаждения с температуры отпуска. При быстром охлаждении с температуры высокого отпуска (в воде или масле) повышение температуры отпуска в интервале 450 — 650 °С приводит к нормальному росту ударной вязкости (какой наблюдается у углеродистой стали при любой скорости охлаждения).

Читайте также  Из какой стали делают гвозди

После медленного охлаждения с температуры отпуска в интервале 450 — 650 °С (с печью или на воздухе) ударная вязкость многих сортов легированной стали оказывается более низкой, чем после быстрого охлаждения. Сталь в состоянии обратимой хрупкости имеет межкристаллитный излом по границам исходных аустенитных зерен.

Отпускную хрупкость, возникшую из-за медленного охлаждения при высоком отпуске, можно устранить повторным высоким отпуском, но с быстрым охлаждением. Ударную вязкость можно вновь снизить, проведя новый высокий отпуск с медленным охлаждением. Вследствие чередования повышения и понижения ударной вязкости при повторных нагревах с разной скоростью охлаждения отпускная хрупкость, возникающая после отпуска в интервале 450 — 650 °С, называется обратимой.

На восприимчивость стали к отпускной хрупкости большое влияние оказывает химический состав. Углеродистая сталь во время испытаний на ударный изгиб при комнатной температуре нечувствительна к скорости охлаждения после высокого отпуска. Фосфор, сурьма, мышьяк и марганец наиболее активно вызывают отпускную хрупкость, а хром действует слабее.

Хромистые стали без других добавок маловосприимчивы к отпускной хрупкости. Введение в хромистую сталь добавок марганца, кремния и никеля резко повышает ее восприимчивость к отпускной хрупкости. Один никель не вызывает отпускной хрупкости, но при совместном присутствии в стали никеля и хрома или никеля и марганца отпускная хрупкость выражена особенно сильно.

Молибден и вольфрам уменьшают склонность стали к отпускной хрупкости.
Особенно эффективен в этом отношении молибден, полезное действие которого проявляется уже при концентрации его 0,2%.

Так как конструкционные стали для ответственных изделий подвергают улучшению, то обратимая отпускная хрупкость является серьезной проблемой. О причинах обратимой хрупкости сушествуют различные мнения.

Длительное время большая часть исследователей придерживалась гипотезы «растворения — выделения», согласно которой ударная вязкость падает из-за выделения по границам зерен каких-то фаз (карбидов, фосфидов или др.). При нагревании стали до температуры высокого отпуска эти фазы переходят в α-раствор, а при медленном охлаждении они выделяются из него и сталь становится хрупкой.

Быстрое охлаждение с температуры высокого отпуска предотвращает выделение фаз, понижающих хрупкую прочность. Гипотеза «растворения — выделения» объясняет обратимость отпускной хрупкости.

Применение специальных реактивов приводит к растравливанию границ исходного аустенитного зерна в стали, находящейся в состоянии обратимой отпускной хрупкости. Пониженная химическая стойкость границ зерен в хрупкой стали подтверждает, что при медленном охлаждении с температуры высокого отпуска действительно на границах зерен происходят какие-то структурные изменения.

Они вызывают снижение ударной вязкости, но практически не сказываются на других механических характеристиках, измеряемых при комнатной температуре.

Объясняется это тем, что ударная вязкость — в высшей степени структурно чувствительное свойство, особенно чувствительное к состоянию границ зерен.

Л. М. Утевский утверждает, что обратимая отпускная хрупкость обусловлена не выделением новой фазы, а лишь изменением состава раствора вблизи границ зерен. Так, обогащение приграничных зол фосфором, снижающим работу образования межзеренных трещин, приводит к развитию отпускной хрупкости.

Практические меры борьбы с обратимой отпускной хрупкостью
— быстрое охлаждение с температуры отпуска (в воде или масле) и легирование стали молибденом или вольфрамом.

«Теория термической обработки металлов»,
И.И.Новиков

Отпуск сталей

Отпуск — это процесс термической обработки, заключающийся в нагреве закаленной стали до температур ниже точки Ас1, c целью получения равновесной структуры и заданного комплекса механических свойств.

Содержание

После закалки сталь имеет структуру на основе мартенсита с тетрагональной искаженной кристаллической решеткой и остаточного аустенита, количество которого зависит от химического состава стали. При нагреве закаленной стали в ее структуре происходят фазовые превращения, которые можно показать в виде схемы.

Схема фазовых превращений при отпуске сталей

Низкий отпуск сталей

Низкий отпуск стали делают при температуре до 250°С. При этом процессе из мартенсита выделяется часть избыточного углерода с образованием мельчайших карбидных частиц (ε-карбидов). ε-карбиды выделяются в виде пластин или стержней и они когерентно связаны с решеткой мартенсита. Распад остаточного аустенита при низком отпуске происходит по механизму бейнитного превращения: образуется гетерогенная смесь кристаллов низкоуглеродистого мартенсита и дисперсных карбидов. Продуктом низкого отпуска является мартенсит отпуска, который отличается от мартенсита закалки меньшей концентрацией углерода и наличием в нем карбидов (ε-карбидов), которые когерентно связаны с решеткой мартенсита.

При температуре около 250°С начинается превращение карбида в цементит; при этом когерентность решеток α-твердого раствора мартенсита и карбидов нарушается.

Низкому отпуску подвергают инструментальные железоуглеродистые материалы (режущий и мерительный инструмент), а также стали, которые подвергались цементации, нитроцементации. Часто низкий отпуск делают для сталей после термообработки токами высокой частоты.

Средний отпуск

Средний отпуск проводится при температурах 350–400 °С. При этом из мартенсита выделяется весь избыточный углерод с образованием цементитных частиц. Тетрагональность (степень тетрагональности) решетки железа уменьшается, она становится кубической. В результате вместо мартенсита остается феррит. Такая феррито-цементитная смесь называется трооститом отпуска, а процесс, приводящий к таким изменениям, среднетемпературным отпуском. При среднем отпуске снижается плотность дислокаций и уменьшаются внутренние напряжения в стали.

Средний отпуск применяется при термообработке упругих деталей: рессор, пружин и др.

Высокий отпуск

Во время высокого отпуск (450-550°С и выше) в углеродистых сталях происходят изменения структуры, не связанные с фазовыми превращениями: изменяются форма, размер карбидов и структура феррита. С повышением температуры происходит коагуляция – укрупнение частиц цементита. Форма кристаллов постепенно становится сферической – этот процесс называется сфероидизацией.

Коагуляция и сфероидизация карбидов начинают происходить более интенсивно с температуры 400°С. Зерна феррита становятся крупными, и их форма приближается к равноосной. Феррито-карбидная смесь, которая образуется после отпуска при температуре 400–600 °С, называется сорбитом отпуска. При температуре, близкой к точке А1, образуется достаточно грубая феррито-цементитная смесь – перлит.

Высокий отпуск с температур 450-550°С применяется для большинства конструкционных сталей. Его широко используют при термообработке различных втулок, опор, крепежных изделий, работающих на растяжение-сжатие и других изделий, которые испытывают статические нагрузки.

Явление отпускной хрупкости

При отпуске некоторых сталей возможно протекание процессов, которые снижают ударную вязкость стали не меняя остальные механические свойства. Такое явление называется отпускной хрупкостью и наблюдается в температурных интервалах отпуска при 250–400ºС и 500–550ºС. Первый вид хрупкости называется отпускной хрупкостью Ι рода и является необратимым, поэтому стоит избегать отпуска сталей при этих температурах. Данный вид присущ практически всем сталям, легированным хромом, магнием, никелем и их сочетанием, и обусловлен неоднородным выделением карбидов из мартенсита. Второй вид отпускной хрупкости — отпускная хрупкость ΙΙ-го рода является обратимым. Отпускная хрупкость ΙΙ-го рода проявляется при медленном охлаждении легированной стали при температуре 500–550°С. Данная хрупкость может быть устранена повторным отпуском с большой скоростью охлаждения (в воде или масле). В этом случае устраняется причина этой хрупкости – выделение карбидов, нитридов, фосфидов по границам бывших аустенитных зерен. Устранение отпускной хрупкости легированных сталей возможно введением в них малых добавок молибдена (0,2–0,3 %) или вольфрама (0,5–0,7 %).

Графически эти виды хрупкости выглядят, как показано на рисунке.

Проявление отпускной хрупкости в сталях при отпуске

Практически все стали подчиняются закону: повышение температуры отпуска — снижение прочностных характеристик и повышение пластических, как показано на рисунке ниже.

Влияние температуры отпуска на механические свойства стали

Такая закономерность не касается быстрорежущих инструментальных легированных карбидообразующими элементами сталей.

Отпуск быстрорежущих инструментальных сталей

Основными легирующими элементами быстрорежущих сталей (Р18, Р6М5 и др.) являются вольфрам, молибден, кобальт и ванадий — элементы, обеспечивающие теплостойкость и износостойкость при эксплуатации. Быстрорежущие стали относятся к карбидному (ледебуритному) классу. Под закалку эти стали нагревают до температуры выше 1200°С (Р18 до температуры 1270°С, Р6М5 — до 1220°С). Высокие температуры закалки необходимы для более полного растворения вторичных карбидов и получения аустенита высоколегированного хромом, молибденом, вольфрамом, ванадием. Это обеспечивает получение после закалки теплостойкого мартенсита. Даже при очень высоком нагреве растворяется только часть карбидов. Для этих сталей характерно сохранение мелкого зерна при высоких температурах нагрева.

Читайте также  Закалка нержавеющей стали

Железо и легирующие элементы «быстрорезов» имеют сильно отличающиеся свойства теплопроводности, поэтому при нагреве, для избежания трещин, следует делать температурные остановки. Обычно при 800 и 1050°С. При нагреве крупного инструмента первую выдержку делают при 600°С. Время выдержки составляет 5-20 мин. Выдержка при температуре закалки должна обеспечить растворение карбидов в пределе их возможной растворимости. Охлаждение инструмента чаще всего делают в масле. Для уменьшения деформации применяют ступенчатую закалку в расплавах солей с температурой 400-500°С. Структура «быстрорезов» после закалки состоит из высоколегированного мартенсита, содержащего 0,3-0,4%С, нерастворенных избыточных карбидов и остаточного аустенита. Чем выше температура закалки, тем ниже положение точек Мн, Мк и тем больше остаточного аустенита. В стали Р18 присутствует примерно 25-30% остаточного аустенита, в стали Р6М5 — 28-34%. Для уменьшения аустенита можно сделать обработку холодом, но как правило этого не требуется.

После закалки следует отпуск при 550 — 570°С, вызывающий превращение остаточного аустенита в мартенсит и дисперсионное твердение за счет частичного распада мартенсита и выделения дисперсных карбидов легирующих элементов. Это сопровождается увеличением твердости (вторичная твердость). В процессе выдержки при отпуске из остаточного аустенита выделяются карбиды, что уменьшает его легированность, и поэтому при последующем охлаждении он претерпевает мартенситное превращение (Мн

150°С). В процессе однократного отпуска только часть остаточного аустенита превращается в мартенсит. Чтобы весь аустенит перешел в мартенсит применяют двух и трехкратный отпуск. Время выдержки обычно составляет 60 минут.
При назначении режима нужно учитывать химические свойства элементов и периодичность выделения карбидов в зависимости от температуры. Например максимальная твердость стали Р6М5 получается за счет 3-х стадийного отпуска. Первый отпуск при температуре 350°С, последующие два при температуре 560-570°С. При температуре 350°С выделяются частицы цементита, равномерно распределенные в стали. Это способствует однородному выделению и распределению спецкарбидов М6С при температуре 560-570°С.

Свойства легированной стали при отпуске

Возникновение отпускной хрупкости практически не сопровождается изменением предела прочности и предела текучести, твердости и пластичности стали. Не установлено существенной разницы у хрупких и вязких образцов в отношении физических свойств: удельного веса, остаточного магнетизма, индукции, коэрцитивной силы и электросопротивления. Не обнаружено рентгенографически различия и в кристаллическом строении. Понятно, что все это крайне затрудняет объяснение природы отпускной хрупкости стали и порождает значительное число иногда весьма произвольных гипотез о ее сущности.

Рассмотрим кратко основные гипотезы о природе отпускной хрупкости стали.

Некоторые авторы связывают возникновение отпускной хрупкости с процессами распада остаточного аустенита. Они полагают, что остаточный аустенит не распадается полностью при высоком отпуске и медленное охлаждение вызывает его дополнительное превращение в мартенсит, что и обусловливает возникновение хрупкости. Влияние легирующих элементов авторы связывают с увеличением количества остаточного аустенита и его стабилизацией. Однако в действительности возможность сохранения в конструкционной среднелегированной стали остаточного аустенита после ее нагрева до температур высокого отпуска противоречит всем имеющимся наблюдениям. Кроме того, с помощью указанной гипотезы невозможно объяснить обратимость отпускной хрупкости.

Ряд исследователей полагает, что явление отпускной хрупкости связано со структурными превращениями карбидов при медленном охлаждении, что, однако, не подтверждается рентгенографическими исследованиями.

Значительное место в металловедческой литературе занимают гипотезы, объясняющие природу отпускной хрупкости стали процессами выделения. Общим для всех этих гипотез является предположение о повышении растворимости различных составляющих в стали при ее нагревании до 600—700° и последующем их выделении при медленном охлаждении в неблагоприятной для вязкости стали форме. В случае быстрого охлаждения стали с указанных температур эти составляющие сохраняются в растворе, в результате чего вязкость стали остается на высоком уровне.

Одни авторы полагают, что такими составляющими являются нитриды, другие — фосфиды, третьи — карбиды. Однако ни одна из вышеуказанных гипотез не в состоянии объяснить многообразия особенностей условий появления отпускной хрупкости. Действительно, если исходить из предположения о нитридах и фосфидах как об основных факторах, вызывающих отпускную хрупкость стали, то остается не вполне

ясной причина поразительного влияния легирующих элементов. С другой стороны, хорошо известны случаи малой чувствительности к отпускной хрупкости сталей с высоким содержанием фосфора и, наоборот, значительной восприимчивости к ней сталей при низком содержании фосфора.

Нельзя также признать достаточно убедительным и объяснение отпускной хрупкости выделением нелегированных карбидов вследствие изменения их растворимости, поскольку новейшие исследования указывают, что растворимость углерода в а-железе при 720° не превышает 0,02% .

В свете последнего трудно допустить, чтобы ничтожные количества нелегированных карбидов, способные растворяться в а-железе при нагреве стали до температур высокого отпуска и выделяться из нее при медленном охлаждении, могли бы столь эффективно воздействовать на свойства стали, не говоря уже о том, что ряд ученых (Н. Т. Гудцов и др.) переменную растворимость углерода в а-железе отрицает совершенно.

Однако если даже предположить, что те ничтожные количества углерода в виде карбидов, которые якобы выделяются при медленном охлаждении стали с температур высокого отпуска, все же вследствие особо неблагоприятной формы расположения (например, исключительно по границам зерен а-фазы) могут приводить к существенному снижению ударной вязкости, то в таком случае с этой гипотезой не согласуется, например, факт влияния марганца. Марганец не увеличивает растворимости углерода в а-железе, а тем не менее резко повышает восприимчивость стали к отпускной хрупкости.

Наконец, карбидная гипотеза любого варианта находится в противоречии с фактом склонности к отпускной хрупкости феррита, о чем речь будет идти ниже.

«Карбидная» гипотеза получила новое толкование в результате работы С. Т. Кишкина, в которой он на основании, главным образом, данных химического анализа карбидных осадков пришел к выводу, что карбидообразование при высоком отпуске легированной сталь не заканчивается полностью в течение принятого на практике времени выдержки и продолжается далее при последующем медленном охлаждении стали или при дополнительном ее отпуске. В случае нагрева стали при отпуске выше интервала возникновения хрупкости процесс выделения легированных карбидов сопровождается их коагуляцей, и сталь приобретает вязкое состояние. Если же образование карбидов происходит в зоне хрупкости, то коагуляция не успевает пройти полностью и наличие дисперсных легированных карбидов приводит к возникновению хрупкости.

Повторный нагрев хрупкой стали выше интервала развития отпускной хрупкости сопровождается коагуляцией дисперсных

карбидов и переходом стали из хрупкого в вязкое состояние. Если при этом сталь не будет медленно охлаждена с температур отпуска и, следовательно, в ней не произойдет образования новой порции дисперсных карбидов, то она сохранит вязкое состояние. Выделившиеся при высоком отпуске нежелезные карбиды уже не растворяются в а-железе при повторном нагреве, чем и объясняется уменьшение восприимчивости стали к отпускной хрупкости с увеличением продолжительности отпуска и числа циклов нагрева.

Следует заметить, что С. Т. Кишкин не отрицает возможности растворения выделившихся при более низких температурах карбидов (только железных) при 650° и выше в а-железе. Дополнительный отпуск при 500—550° вследствие понижения растворимости углерода в а-железе вызовет выделение мелких, преимущественно нежелезных, карбидов, что будет сопровождаться появлением хрупкости стали. Восприимчивость стали к отпускной хрупкости прекращается после того как в результате длительных выдержек или многократных нагревов весь углерод будет переведен в форму нежелезных карбидов, не способных уже растворяться в а-железе. Тем не менее и эта гипотеза, равно как и одна из рассмотренных выше «карбидных» гипотез, не имеет прямых экспериментальных подтверждений. Между тем ряд выдвигаемых в карбидных гипотезах положений не соответствует данным опытных наблюдений. Действительно, все авторы карбидных гипотез исходят из предположения, что при медленном охлаждении стали после высокого отпуска тем или иным путем происходит выделение из а-твердого раствора углерода в виде дисперсных карбидов, в то время как в случае быстрого охлаждения этот процесс развития не получает. В то же время рентгеноструктурные исследования показали, что углерод успевает выделиться из а-твердого раствора даже в том случае, если сталь с температур высокого отпуска замачивается в воде. Следует ожидать, что при быстром охлаждении стали после высокого отпуска карбиды должны получаться в значительно более дисперсной форме, чем при медленном охлаждении стали. Поэтому, если бы возникновение хрупкости действительно было связано с образованием дисперсных карбидов, то быстро охлажденная после отпуска сталь вряд ли обладала бы высокой вязкостью.

Читайте также  Площадка текучести стали

Однако малая состоятельность карбидных гипотез особенно наглядно обнаруживается, если обратиться к работе Вейнгартена, исследовавшего восприимчивость к отпускной хрупкости малоуглеродистой стали с различным содержанием фосфора, представляющей собой в равновесном состоянии легированный феррит. Одновременно изучалась также отпускная хрупкость анало

гично легированной конструкционной стали с обычным содержанием углерода.

В табл. 50 приведен химический состав экспериментальных плавок и указана их восприимчивость к отпускной хрупкости. Сталь плавок 2—4, содержащая в своем составе только 0,01%С, обладает отчетливо выраженной восприимчивостью к отпускной хрупкости, причем чем выше в стали содержание фосфора, тем более сильно проявляется это свойство. Характерно, что и при обычном в конструкционной стали количестве фосфора (0,035%) заметна определенная восприимчивость стали к отпускной хрупкости. В то же время, в связи с низким содержанием углерода (0,01%), следует предположить, что в данной стали при любых температурах должна отсутствовать карбидная фаза. В свете этого утверждения авторов карбидных теорий о решающей роли процессов выделения карбидов в развитии отпускной хрупкости представляются все же мало достоверными.

Влияние углерода на отпускную хрупкость стали можно проследить, сопоставляя плавки 1 и 5; 2 и 6; 3 и 7. Увеличение содержания углерода с 0,01 до 0,3% сопровождается некоторым повышением восприимчивости стали к отпускной хрупкости. Однако нет никаких оснований приписывать углероду (карбидной фазе) решающую роль в развитии этого свойства. Автор исследовал отпускную хрупкость малоуглеродистой стали, содержащей 0,04% С; 1,6% Мп; 1,54% Сг и 0,015% Р, а также 0,05% С;

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Отпускная хрупкость металла

Отпускная хрупкость: что это такое, ее особенности

Большая часть известных сортов стали обладают отпускной хрупкостью – особым состоянием сплава, характеризующимся невысоким значением ударной вязкости. При нормальных условиях это свойство не способно оказывать влияние на прочие механические свойства материала.

На схеме представлено наглядное изображение зависимости температуры отпуска от значений ударной вязкости закаленной стали, которая характеризуется повышенной склонностью к нахождению в состоянии отпускной хрупкости. Большинство подобных материалов обладают двумя интервалами отпускной хрупкости. В процессе отпуска в диапазоне от 250 o C до 400 o C фиксируется необратимая хрупкость, а в интервале от 450 o C до 650 o C – обратимая.

Корреляция отпускной температуры и ударной вязкости

На схеме, расположенной ниже, представлена зависимость влияния значений отпускной температуры на ударную вязкость материала, обладающим определенной склонностью к отпускной хрупкости.

1- Процесс охлаждения осуществляют с большой скоростью,

2- Процесс охлаждения проводят постепенно, с небольшой скоростью.

Ударная вязкость различных типов стали по завершении отпуска в температурном интервале от 250 o C до 400 o C несколько ниже, чем во время отпуска при температурах меньших, чем 250 o C.

Если при нагревании хрупкой стали, отпущенной в интервале от 250 o C до 400 o C, до температуры, превышающей 400 o C, перевести ее в вязкое состояние, то процесс вторичного отпуска в интервале 250 o C – 400 o C не повлияет на значение ударной вязкости.

Сталь, пребывающая в состоянии отпускной хрупкости, обладает свойственным межкристаллитным изломом, локализованном на бывших зерновых границах. Подобная хрупкость является характерной для всех сталей, но в различной степени. Именно по этой причине средний отпуск сталей не принято использовать на практике, однако именно этот показатель способен обеспечить большое значение предела текучести.

Причины явления

Одной из главных причин такого явления, как необратимая отпускная хрупкость, можно назвать карбидообразование. Под этим термином подразумевают процесс, который происходит при разложении мартенсита: формирование карбидной пленки на зерновых границах. Эти пленки сами по себе исчезают в ходе нагревания до высокой температуры, при этом вторичный нагрев до 250 o C до 400 o C не приводит к их возникновению вновь. Кремний, присутствующий в составе некоторых сталей, способствует ингибированию процесса разложения мартенсита.

Ударная вязкость большинства из типов закаленных сталей после высокого отпуска в диапазоне температур от 450 o C до 650 o C может варьироваться в зависимости от того, насколько быстро протекает процесс охлаждения.

При постепенном остывании с температуры отпуска значение ударной вязкости большинства типов закаленных сталей становится ниже, по сравнению с тем значением, которое наблюдается по завершении быстрого охлаждения.

Появление отпускной хрупкости, наблюдаемой по причине медленного охлаждения при высоком отпуске, ликвидируется путем повторения высокого отпуска, однако, прибегая уже к скоростному охлаждению. Сократить ударную вязкость материала можно и повторно, при осуществлении очередного высокого отпуска, при этом скорость охлаждения должна быть несколько ниже, чем на предшествующей стадии.

Элементы, входящие в состав стали, играют значительную роль в степени восприимчивости материала к отпускной хрупкости. Последней благоприятствуют некоторые элементы, в число которых входят фосфор, марганец, воздействие хрома несколько слабее. Хромсодержащая сталь, не имеющая в своем составе прочих добавок, является маловосприимчивой к отпускной хрупкости. Добавление к материалу марганца, никеля или кремния способствует резкому увеличению ее восприимчивости к отпускной хрупкости. В частности, никель не способен самостоятельно вызывать отпускную хрупкость, однако, действуя в тандеме с хромом или марганцем, способствуют возникновению данного явления.

Добавки молибдена, вольфрама способствуют уменьшению склонности материала к проявлению отпускной хрупкости. Наибольшей эффективностью обладает именно молибден, даже в небольших количествах (около 0.2% по массе).

Теория «растворения-выделения»

Поскольку при создании конструкционных сталей прибегают к серьезным улучшениям, то обратимая отпускная хрупкость представляет собой довольно большую трудность, возникающей на пути у производителя. О причинах возникновения явления обратимой хрупкости существует целый ряд всевозможных теорий на данный счет.

Довольно долго огромное количество ученых следовало предположению о «растворении — выделении». Согласно этой теории, ударная вязкость сокращается вследствие возникновения по зерновым границам каких-либо посторонних фаз, в число которых входят фосфиды, карбиды и прочие химические соединения. После нагрева материала до температуры, соответствующей высокому отпуску, данные фазы начинают медленный переход в раствор, а постепенное охлаждение способствует выделению их из него, в результате чего сталь теряет свои прочностные характеристики.

Быстрое охлаждение материала с температуры отпуска позволяет предотвратить формирование новых фаз, способствующих уменьшению хрупкой прочности. Кроме того, теория «растворения — выделения» может объяснить и обратимый характер, который носит отпускная хрупкость.

Взаимодействие стали с некоторыми веществам ведет к растравливанию зерновых границ в структуре материала, которые пребывают в состоянии обратимой отпускной хрупкости. Невысокая устойчивость к некоторым химическим веществам этих самых зон является подтверждением того факта, что постепенное охлаждение от температуры высокого отпуска приводит к возникновению различных структурных изменений.

В частности, фиксируется сокращение ударной вязкости, однако значение иных механических характеристик, которые измеряются в условиях комнатной температуры, остается без изменений.

Подобные наблюдения могут быть объяснены тем, что ударная вязкость представляет собой характеристику, сильно зависящую от структуры материала, являющейся очень чувствительной к тому состоянию, в котором находятся границы зерен.

По мнению Л. М. Утевского, обратимая отпускная хрупкость сплавов обусловлена не образованием новых видов фаз, а изменением химического состава раствора, присутствующего в зонах рядом с зерновыми границами. Например, заполнение вышеупомянутых зон фосфором стимулирует снижение работы формирования расколов между зернами, что становится результатом развития отпускной хрупкости.