Кислородно конвертерный способ производства стали

Учебные материалы

Бессемеровский способ

Кислый способ, футеровка конвертера выложена из динасового огнеупорного кирпича. Применяется при переплавке в сталь чугуна марок Б1 и Б2, содержащих строго ограниченное (максимально допустимое в сталях) количество фосфора и серы. Это объясняется тем, что в конвертерах или в других печах с кислой футеровкой невозможно удалять вредные примеси S и Р.

Плавка стали в конвертере состоит в следующем:

  1. Конвертер ставится в горизонтальное положение.
  2. Заливается жидкий чугун.
  3. Подается воздушное дутье под давлением Р = 3÷3,5 атм. (который окисляет примеси) и одновременно с этим конвертер ставится в вертикальное положение.

Во время плавки в кислом конвертере наблюдается 3 периода:

1) Окисление Fe, Mn, Si и образуется шлак

Длится процесс окисления 3-6 минут.

2) Выгорание углерода, т.е. его окисление, жидкость кипит:

СО вырвавшись из стали догорает ярким пламенем высотой 8-10 метров

3) Пламя прекращается и появляется бурый дым, что означает горение железа, а сам дым – частицы окислов железа. Необходимо побыстрее прекратить подачу воздуха и процесс плавки окончен.

Если углерода в стали осталось меньше необходимого по марки выплавляемой стали, то состав по С доводится добавлением в стали небольшого количества высокоуглеродистого чугуна и ферросплавов Fe-Mn, Fe-Si и Al.

Процесс плавки длится 20-30 минут, емкость конвертеров всего до 30г.

Этот метод экономичный, эффективный и распространенный. Сталь содержит незначительное количество кислорода (кислород вредная примесь, FeO повышает хрупкость стали, усиливает склонность к старению и повышает порог хладноломкости), поэтому кислая (бессемеровская) сталь более пластичная, следовательно более качественная, по сравнению со сталями выплавляемыми в основных печах.

В настоящее время развитие конвертерного производства идет по расширению кислородно-конвертерного способа, емкость которых до 250-300т.

Томасовский способ

Томасовский способ – продувка через жидкий металл воздуха, но футеровка основная и благодаря этому становится возможным удаление фосфора. Футеровка доломитовая (МgO, СаО). Применяется для переплавки в стали чугунов марок Т-1 и Т-2, содержащих повышенный % фосфора до 2,2% и серы.

В томасовском конвертере процессы окисления протекают в такой же последовательности, как и в бессемеровском, за исключением того, что в третьем периоде идет бурное окисление фосфора, за счет чего резко повышается температура стали и сталь становится более качественной и пластичной.

Для удаления Р и S в конвертер загружается 12-14% от веса заливаемого чугуна – известняк СаСО3:

Р2О5(СаО)4 – очень прочное соединение и ценное удобрение для сельского хозяйства.

– FeS + СаО → СаS + FeО, где СаS – непрочное соединение, поэтому вводят Mn:

СаS + MnO → MnS + СаО, где MnS – не переходит в ванну, если остается, то это более тугоплавкое соединение нежели FeS + Fe (tплавл. ≈ 988°С).

В настоящее время томасовский способ в нашей стране почти не применяется, так как высокофосфористых и высокосернистых руд у нас мало.

Рассмотренные конвертерные способы выплавки стали имеют следующие преимущества:

  1. Высокая производительность (время плавки 20-30 мин.).
  2. Простота конструкций печей (конвертеров) и следовательно малые капитальные затраты.
  3. Малые эксплуатационные затраты.
  4. Не требуется при плавке специально вводить тепло, так как оно получается в конвертерах за счет реакций окисления примесей.
  1. Значительный угар железа (до 13%).
  2. Невозможность переплавлять в больших количествах скрап (металлический лом).
  3. Более низкое качество стали (главный недостаток конвертирования) – например, за счет продувки воздухом в стали увеличивается содержание азота (до 0,025-0,048%), которое заметно снижает качество стали.
  4. Из-за непродолжительности процесса невозможно в конвертерах выплавлять стали сложного химического состава, а из-за невысоких температур (наибольшая tплавл. = 1600°С) невозможно добавлять тугоплавкие легирующие компоненты (W, Mo, Nb и т.д.).

Таким образом до настоящего времени конвертерное производство стали было ограничено из-за вышеизложенных недостатков. В конвертерах выплавлялись лишь простые углеродистые стали обыкновенного качества.

Кислородно-конвертерный способ производства стали

В настоящее время промышленная индустрия настолько окрепла, что стало возможным в больших промышленных количествах получать промышленно чистый кислород. Продувая чугун кислородом имеется возможность выплавлять в них стали по качеству близкие к мартеновским. Кроме того благодаря применению О2 в конвертерах производительность их еще более повышается и также повышается температура ванны (tплавл. повышается до

2500°С), что позволяет уже в большем количестве в конвертерах переплавлять скрап. Кислородно-конвертерное производство позволило в последние годы выплавлять в конвертерах до 40% от общего количества выплавляемой стали.

Рисунок 1.2 – Кислородно-конверторный способ:

1 – горловина для загрузки, 2 – цилиндрическая часть,
3 – стальное кольцо с цапфами, 4 – съемное днище

При этом способе кислород подается в ванну жидкого чугуна в конвертере сверху, через охлаждаемую водой фурму.

Конвертерные установки с донной кислородно-топливной продувкой – в 1,5 раза превосходят по производительности 2-х ванную мартеновскую печь (при сохранении баланса металлолома).

Уважаемые студенты!
Специалисты нашего сайта готовы оказать помощь в учёбе по разным предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Разновидности кислородно-конверторного производства стали

Около 70% стали от общего объема мирового производства изготавливается конвертерным способом. До середины прошлого столетия для получения стали применялись бессемеровский и томасовский процессы. Однако в дальнейшем сталь начали производить усовершенствованным кислородно-конвертерным способом. В настоящее время предшественники современного метода практически не применяются.

  1. Суть конвертерного производства
  2. Принцип бессемеровского способа
  3. Принцип томасовского способа
  4. Принцип работы кислородного конвертера
  5. Кислородный конвертер – описание процесса плавки
  6. Видео по теме: Основы кислородно конвертерного производства

Суть конвертерного производства

В конвертерном производстве применяются специальные сталеплавильные агрегаты, называемые конвертерами. Производство стали осуществляется путем продувки жидкого чугуна воздухом или кислородом. Данный металл содержит различные примеси, в том числе кремний, углерод и марганец. Примеси окисляются под действием кислорода и удаляются из расплава. Основным преимуществом конвертерного способа является то, что для работы сталеплавильного устройства не требуется топливо. Сталь расплавляется под действием тепла, которое выделяют окисляющиеся примеси.

Принцип бессемеровского способа

Впервые массовое получение жидкой стали стало возможным в 1856 году благодаря Г. Бессемеру – изобретателю из Англии. Он придумал, как нагреть металл до температуры, превышающей 1500°С. Именно такая температура необходима для того, чтобы расплавить металл с пониженным содержанием углерода.

Бессемеровский процесс предусматривает продувку расплава атмосферным воздухом. Для этих целей применяются конвертеры, у которых внутренняя часть камеры сгорания защищена динасовым кирпичом. Благодаря такой защите бессемеровский способ называют кислой футеровкой конвертера.

Плавка в бессемеровском сталеплавильном агрегате осуществляется путем заливки чугуна при температуре 1250–1300°С. Следует заметить, что для выплавки бессемеровских чугунов требуются железные руды с низким содержанием серы и фосфора.

Залитый чугун продувают воздухом, в результате чего происходит окисление углерода, марганца и кремния. При окислении образуются оксиды, формирующие кислый шлак. Продувку воздухом заканчивают после того, как углерод окислится до требуемых значений.

Далее металл через горловину сливают в ковш, попутно его окисляя. У такого способа присутствует один существенный недостаток, заключающийся в невысоком качестве конечного продукта, который получается слишком хрупким за счет неполного удаления серы и фосфора.

Принцип томасовского способа

В 1878 году англичанину С.Г. Томасу удалось устранить главный недостаток бессемеровского способа. Кислую футеровку конвертера он заменил основной. Внутренний защитный слой в ванной был выложен смолодоломитовым кирпичом. А чтобы удалить из металла большую часть примесей, он предложил использовать известь, функция которой заключалась в связывании фосфора.

Томасовский процесс позволил перерабатывать чугун с высоким содержанием фосфора. Поэтому наибольшее распространение данный способ получил в странах, где железные руды содержат много фосфора. Во всем остальном метод, изобретенный Томасом, мало чем отличается от предложенного Бессемером:

  • и в том, и в другом случае используется сталеплавильный агрегат, в который чугун подается сверху через отверстие в горловине,
  • через это же отверстие производится выпуск стали.
  • снизу сталеплавильный агрегат снабжен съемным днищем, что позволяет заменять его по мере выработки определенного срока службы,
  • дутье в полость сталеплавителя поступает через специальные сопла, расположенные в футеровке днища.

Как уже говорилось выше, слив стали производится через отверстие в горловине. Перевернуть многотонный агрегат позволяют цапфы в цилиндрической части конвертера. При томасовском процессе в сталеплавитель загружают известь, позволяющую получить основной шлак. Далее туда же заливают высокофосфористый чугун, нагретый до 1200–1250°С и подают дутье. При подаче дутья происходит окисление кремния, марганца и углерода. В основной шлак удаляются сера и фосфор. Продувка завершается тогда, когда содержание фосфора снизится до определенных показателей. Окончательным этапом, как и в бессемеровском процессе, является выпуск металла с последующим раскислением.

Читайте также  Классификация марок стали

Принцип работы кислородного конвертера

Впервые кислородное дутье было запатентовано Г. Бессемером. Однако в течение продолжительного времени кислородно-конвертерный процесс не применялся, в связи с отсутствием массового производства кислорода. Первые опыты по продувке кислородом стали возможными в начале сороковых годов прошлого столетия.

Устройство кислородного конвертера осталось прежним:

  • камера сгорания изнутри защищена основной футеровкой,
  • однако вместо воздуха в нем применяется продувка кислородом,
  • подача кислорода осуществляется через водоохлаждаемые сопла.

На территории России применяются сталеплавители с верхней подачей кислорода.

Особенностью конвертерного способа с кислородной продувкой является скоротечность. Весь процесс расплавления металла занимает десятки минут. Однако во время работы требуется тщательно отслеживать содержание в чугуне углерода, температуры его расплава и прочие параметры, чтобы вовремя прекратить продувку.

Процесс сталеплавильного производства упростился, когда кислородные конвертеры оснастили автоматическими системами, усовершенствовали лабораторную технику и измерительные приборы. Усовершенствование кислородно-конвертерного процесса позволило повысить производительность, снизить себестоимость металла и повысить его качество.

Современные кислородные конвертеры могут работать в трех основных режимах:

  • с полным дожиганием окиси углерода,
  • с частичным дожиганием ОС,
  • без дожигания ОС.

Они позволяют производить сталь из чугуна различного состава.

Кислородный конвертер – описание процесса плавки

Кислородный конвертер – это стальной сосуд грушевидной формы. Его внутренняя часть защищена смолодоломитовым (основным) кирпичом. Вместимость сталеплавильного агрегата варьируется от 50 до 350 тонн. Сосуд распложен на цапфах и способен поворачиваться вокруг горизонтальной оси, что позволяет беспрепятственно заливать в него чугун, закладывать другие добавки и сливать металл со шлаком.

Чтобы получить конечный продукт, в конвертер заливается не только чугун, но и закладывают добавки. К ним относятся:

  • лом металла,
  • шлакообразующие материалы (железная руда, известь, полевой шпат, бокситы).

Конвертерный способ с кислородной продувкой предусматривает заливку в конвертер чугуна, нагретого до 1250–1400°С. Установив конвертер в вертикальное положение, в него подают кислород. Как только началась продувка, в расплавленный чугун вводят остальные компоненты, входящие в состав шлака. Перемешивание чугуна со шлаком осуществляется под действием продувки.

Так как концентрация чугуна гораздо выше, чем примесей, в процессе продувки происходит образование оксида железа, который растворяясь, обогащает металл кислородом. Именно растворенный кислород способствует уменьшению в металле концентрации кремния, углерода и марганца. А когда примеси окисляются, выделяется полезное тепло.

Особенностью основного шлака является большое содержание оксида кальция и оксида железа, которые в начале продувки способствуют удалению фосфора. Если же содержание фосфора превышает требуемый показатель, шлак сливают и наводят новый. Продувку кислородом заканчивают, когда содержание углерода в конечном продукте соответствует определенному параметру. После этого конвертер переворачивают и производят слив стали в ковш, куда добавляют раскислители и другие добавки.

Конвертерное производство

Конвертерное производство — получение стали в сталеплавильных агрегатах-конвертерах путём продувки жидкого чугуна воздухом или кислородом. Превращение чугуна в сталь происходит благодаря окислению кислородом содержащихся в чугуне примесей (кремния, марганца, углерода и др.) и последующему удалению их из расплава.

Содержание

Процессы

Бессемеровский процесс

Первый массовый способ получения жидкой стали открыл английский изобретатель Генри Бессемер в 1856. Основной недостаток процесса — невысокое качество металла за счёт неудалённых при продувке вредных примесей (фосфора и серы). Для выплавки бессемеровских чугунов нужны очень чистые по содержанию серы и фосфора железные руды, природные запасы которых ограничены.

Томасовский процесс

Англичанин Сидни Джилкрист Томас в 1878 вместо кислой динасовой футеровки бессемеровского конвертера применил основную футеровку, а для связывания фосфора предложил использовать известь. Томасовский процесс позволил перерабатывать высокофосфористые чугуны и получил распространение в странах, где железные руды большинства месторождений содержат много фосфора (Бельгия, Люксембург, др.). Однако и томасовская сталь была низкого качества. В 1864 французский металлург П. Мартен разработал процесс получения стали в мартеновской печи. В отличие от конвертерных способов получения стали, мартеновский процесс отличался малой требовательностью к химическому составу исходного материала, позволял переплавлять большое количество стального лома; качество мартеновской стали было выше конвертерной. Однако следует заметить, что время плавки в мартеновской печи гораздо больше, чем в конвертере. Вследствие этого мартеновский способ вытесняется окончательно конвертерным. Единственным достоинством стали выплавленной в мартеновской печи, по сравнению с конвертерной, остается её большой ассортимент, в то время как, для повышения количества марок стали конвертерной используют установку доводки стали. К середине XX века мартеновским способом изготовлялось около 80 % всей стали, производимой в мире.

Кислородно-конвертерный процесс

В 1936 советский инженер Н. И. Мозговой впервые использовал для продувки чугуна в конвертере кислород, что коренным образом изменило технологию конвертерного производства. Металл, получаемый кислородно-конвертерным процессом, по качеству стал равноценным мартеновской стали, себестоимость стали снизилась на 20—25 %, производительность увеличилась на 25—30 %.

На сегодняшний день существует три основных режима работы конвертера: с полным дожиганием окиси углерода, с частичным и без дожигания СО.

Существует много разновидностей кислородно-конвертерного процесса, предназначенного для производства стали требуемого качества из чугунов различных составов: низко- и высокофосфористых, кремнистых и низкокремнистых, марганцовистых и высокомарганцовистых и т. п. Наибольшее распространение получил кислородно-конвертерный способ с верхней продувкой чугуна технически чистым кислородом (чистотой не менее 99,5 %, остальные 0,5 % — азот, аргон, криптон).

Устройство конвертера

Бессемеровский и томасовский конвертеры представляют собой сосуд грушевидной формы, выполненый из стального листа с футеровкой изнутри. Футеровка бессемеровского конвертера кислая (динасовый кирпич),томасовского -основная (смолодоломит). Сверху в суживающейся части конвертера — горловине- имеется отверстие, служащее для заливки чугуна и выпуска стали. Дутье, подаваемое в воздушную коробку, поступает в полость конвертера через фурмы (сквозные отверстия), имеющиеся в футеровке днища. Дутьем служит воздух, подаваемый под давлением 0,30-0,35 МПа. Цилиндрическая часть конвертера охвачена опорным кольцом; к нему крепятся цапфы, на которых конвертер поворачивается вокруг горизонтальной оси. Стойкость днища бессемеровского конвертера составляет 15-25 плавок, после чего их заменяют. Стойкость остальной футеровки выше: у томасовского конвертера 250-400 плавок, у бессемеровского 1300-2000 плавок.

Развитие кислородно-конвертерного производства стали

Бессемеровский конвертер

Бессемеровский процесс (кислая футеровка конвертора) разработан англи-чанином Г. Бессемером в 1856-1869гг. и позволяет перерабатывать чугун с низ-ким содержанием фосфора и серы и достаточным количеством кремния. Плавка в бессемеровском конвертере проводится следующим образом. В конвертер заливают бессемеровский чугун (0,7-1,25%Si; Читайте также: Назначение и принцип действия трансформаторов напряжения

Плавка в томасовском конвертере проводится следующим образом. В конвертер загружают известь для образования основного шлака. Затем заливают томасовский чугун (1,6 — 2,0%P;

Конвертерный способ производства стали — Справочник металлиста

Для производства стали применяют три хорошо отработанных технологических процесса: мартеновский, кислородно-конвертерный, электроплавильный. Согласно статистике наибольшее количество стали в мире выплавляют, используя кислородный конвертер. На него приходится более 70% всей выплавляемой стали.

Основы этого метода были разработаны в начале тридцатых годов двадцатого века. Применять его приступили на австрийских заводах, расположенных в двух городах Линце и Донавице только в пятидесятые годы двадцатого века.

В зарубежной технической литературе по металлургии этот способ получения стали именуется буквами ЛД. Это название возникло из первых букв австрийских городов. У наших металлургов он именуется как кислородно-конвертерный.

Область применения конвертерных видов стали

Имеющиеся недостатки несколько ограничивают область применения подобной стали. Из неё производят такие деталей, к которым не предъявляют повышенные технические требования.

В кислородных конвертерах получают продукцию трёх видов: углеродистую, легированную и низколегированную сталь.

Эти марки используются для изготовления проволоки (катанки), труб небольшого диаметра, отдельных видов рельс.

пециальные изделия активно применяются в строительстве. Практически вся так называемая автоматная сталь изготавливается по конвертерной технологии. Из неё производят большое количество метизной продукции: болты, гайки, шурупы, саморезы, скобы и так далее.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Конвертерное производство стали

Кислый способ, футеровка конвертера выложена из динасового огнеупорного кирпича.

Применяется при переплавке в сталь чугуна марок Б1 и Б2, содержащих строго ограниченное (максимально допустимое в сталях) количество фосфора и серы.

Читайте также  Марки нержавеющей стали для пищевой промышленности

Кислородный конвертор

Кислородно-конвертерный процесс это процесс выплавки стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом через водоохлаждаемую фурму. В России используют в основном конвертеры с подачей кислорода сверху. Кислородный конвертор представляет собой сосуд грушевидной формы из стального листа, футерованный основным кирпичом (рисунок 21). Вместимость конвертера 50-350 тонн. В процессе работы конвертер может поворачиваться на цапфах вокруг горизонтальной оси на 360 градусов для завалки металлолома, заливки чугуна, слива стали и шлака.

Шихтовыми материалами кислородно-конвертерного процесса являются:

  • жидкий передельный чугун;
  • металлолом;
  • шлакообразующие (известь, полевой шпат, железная руда, бокситы).

Перед плавкой конвертер наклоняют, загружают через горловину металло-лом (скрап) и заливают чугун при температуре 1250 – 1400 °C (рисунок 21а). После этого конвертер поворачивают в вертикальное положение (рисунок 21б), вводят водоохлаждаемую фурму и через нее подают кислород. Одновременно с началом продувки в конвертер загружают известь, бокситы, железную руду для образования жидкоподвижного шлака. Кислород проникает в металл, вызывает его циркуляцию и перемешивание со шлаком.

В зоне контакта кислородной струи с чугуном интенсивно окисляется же-лезо, так как концентрация его выше, чем примесей. Образующийся оксид же-леза растворяется в шлаке и металле, обогащая металл кислородом. Растворенный в металле кислород, окисляет кремний, марганец, углерод и содержание их в металле понижается. При этом происходит разогрев ванны металла теплотой, выделяющийся при окислении примесей. Благодаря присутствию шлаков с большим содержанием CaO и FeO про-исходит удаление из металла фосфора в начале продувки ванны кислородом, когда температура ее еще не высока. В чугунах, перерабатываемых в кислородных конвертерах, не должно быть более 0,15%P. При повышенном содержании фосфора для его удаления необходимо сливать шлак и наводить новый. Удаление серы из металла в шлак проходит в течении всей плавки. Однако для передела в сталь в кислородных конвертерах применяют чугун с содержа-нием до 0,07%S.

Подачу кислорода заканчивают, когда содержание углерода в металле соответствует заданному. После этого конвертер наклоняют, выпуская сталь в ковш через летку (рисунок 21в) и одновременно вводят в ковш раскислители и легирующие добавки. В ковш сливают также небольшое количество шлака, ко-торый предохраняет металл в ковше от быстрого охлаждения. Оставшейся шлак сливают через горловину в шлаковую чашу. Общая длительность плавки в конвертерах емкостью 50 – 350 тонн соста-вляет 30 – 50 минут. Конвертерный процесс с донной продувкой кислородом. Конвертеры для донной кислородной продувки имеют отъёмное днище, а в остальном схожи с конвертерами, применяемыми при верхней продувке кислородом. Емкость этих конвертеров составляет 30 – 250 тонн.

В зависимости от емкости в днище устанавливают определенное количество фурм. Каждая фурма состоит из двух концентрически расположенных труб. По средней трубе подают кислород, а внешняя труба образует кольцевой зазор, через который подается защитная среда, состоящая из газообразных или жидких углеводородов. При донной продувке у фурм в результате окисления здесь примесей чугуна образуются зоны высоких температур и футеровка днища по этой причине разрушается в течение нескольких минут. Образующаяся кольцевая оболочка предотвращает контакт кислорода с чугуном у фурм, перемещая зону интенсивного окисления примесей чугуна и тепловыделения от фурм в объем ванны. Кроме того, при контакте с жидким металлом углеводороды разлагаются, что сопровождается поглощением тепла и обеспечивает охлаждение околофурменной зоны.

Конвертерный способ получения стали

Стальные изделия даже на фоне активного распространения высокопрочных пластиков сохраняют свои позиции на рынке. Углеродистые сплавы с разными характеристиками используются в приборо- и автомобилестроении, строительстве и на производствах.

Уникальное сочетание упругости и прочности делает материал выгодным с точки зрения длительной эксплуатации. Соответственно, изделия служат дольше и дешевле обходятся в обслуживании. Но и это не все достоинства, которыми обладает сталь.

Получение стали с применением современных технологий позволяет наделять структуру металла и дополнительными свойствами.

Общие сведения о технологиях производства

задача технолога заключается в обеспечении процесса, при котором в заготовке уменьшается содержание углерода и всевозможных примесей, например серы и фосфора. Основой для заготовки выступает чугун.

Стоит отметить, что печи для изготовления чугуна появились еще в средних веках, в то время как первое получение стали было реализовано только в 1885 г., и по сей день методы производства сплава развиваются и улучшаются.

Различия в подходах к процессу преимущественно обусловлены способом окисления углерода.

В качестве исходного материала используется литейный чугун. Он может быть применен в твердом или расплавленном виде.

Также могут применяться железосодержащие изделия, получение которых осуществлялось путем прямого восстановления.

Практически все способы получения стали в том или ином виде также предусматривают процесс рафинирования от примесей. Например, конвертерная технология обеспечивает их выдувание кислородом.

Конвертерный метод

При таком способе в качестве основы может применяться расплавленный чугун, а также примеси и отходы в виде руды, металлического лома и флюса. Сжатый воздух подается через технологические отверстия на подготовленную основу, способствуя выполнению химических реакций.

Также в процессе участвует тепловое воздействие, при котором происходит окисление кислорода и примесей. Особое значение имеют и характеристики печного сооружения, в котором обрабатывается сталь. Получение стали может происходить в агрегатах с разной футеровкой – наиболее распространены способы защиты конструкций огнеупорным кирпичом и доломитовой массой.

По типу футеровки конвертерный метод подразделяется также на два других способа: томасовский и бессемеровский.

Особенностью данного метода является тщательная переработка чугуна, содержащего до 2 % фосфорных примесей. Что касается техники футеровки, то ее реализуют с применением оксидов кальция и магния. Благодаря этому решению шлакообразующие элементы наделяются избыточным количеством оксидов. Процесс фосфорного горения выступает одним из ключевых источников тепловой энергии в данном случае.

К слову, сгорание 1 % фосфорного наполнения повышает температуру печи на 150 °C. Томасовские сплавы отличаются малым содержанием углерода и чаще всего применяются в качестве технического железа. В дальнейшем из него изготавливают проволоку, кровельное железо и т. п.

Кроме того, получение стали (чугунов) может применяться для выработки фосфористого шлака с целью дальнейшего использования в качестве удобрения на почвах с повышенной кислотностью.

Бессемеровский способ

Этот способ предполагает переработку основ, в которых содержится небольшое количество серы и фосфора. Но при этом отмечается и высокое содержание кремния – порядка 2 %. В процессе продувания в первую очередь происходит окисление кремния, что способствует интенсивному выделению тепла. В итоге температура в печи повышается до 1600 °C.

Окисление железа происходит также интенсивно по мере сгорания углерода и кремния. При бессемеровском способе процесс получения стали предусматривает полный переход фосфора в сталь. Все реакции в печи идут быстро – в среднем 15 мин.

Связано это с тем, что кислород, выдуваемый через чугунную основу, вступает в реакции с соответствующими веществами по всему объему. Готовая же сталь может содержать высокую концентрацию монооксида железа в растворенном виде. Данная особенность относится к минусам процесса, так как общее качество металла понижается.

По этой причине технологи рекомендуют перед разливкой раскисливать сплавы при помощи специальных компонентов в виде ферромарганца, ферросилиция или алюминия.

Получение в мартеновских печах

Если в случае с конвертерным способом изготовления металла предусматривается обеспечение выжига воздушным кислородом, то мартеновский способ требует включения в технологический процесс железных руд и ржавого лома. Из этих материалов образуется кислород оксида железа, который также способствует выгоранию углерода.

Сама же печь включает в основу конструкции плавильную ванну, которая закрывается жаропрочной кирпичной стенкой. Также предусматривается несколько камер регенераторов, обеспечивающих предварительный прогрев воздушной массы и газа. Регенерирующие блоки оснащаются специальными насадками, выполненными из огнестойкого кирпича.

Плавка в конвертере с донной продувкой протекает следующим образом.

В наклоненный конвертер загружают стальной лом и заливают жидкий чугун. При заливке конвертер поворачивают в почти горизонтальное положение, чтобы жидкий чугун не заливал фурм. Для защиты фурм от попадания чугуна и шлака через них продувают азот или воздух. Затем подают дутьё и конвертер поворачивают в рабочее вертикальное положение. В начале продувки вдувают порошкообразную известь иногда с добавкой плавикового шпата.

Читайте также  Почему ржавеет нержавеющая сталь

В ходе продувки окисляется избыточный углерод, кремний, марганец. Формируется шлак, в который удаляются фосфор и сера. За счет реакций окис-ления расплавляется металлолом и нагревается металл. Продувку заканчивают при заданном содержании углерода в металле.

Особенностью технологии процесса при донной продувке является то, что скорость обезуглероживания металла оказывается выше вследствие более инте-нсивного перемешивания ванны и увеличения поверхности раздела газ-металл, а также более полного усвоения кислорода. Технологические преимущества конвертерного процесса с подачей кисло-рода снизу послужили основанием для разработки вариантов технологии ком-бинированной продувки металла сверху и снизу.

Кислородно-конвертерное производство стали

Курсовая работа

Технологические линии и комплексы

Тема: Конвертор2,5 млн.тонн.

Установка непрерывной разливки стали сляба 1200/100мм

Д. БФ. 150404. 1039. КП. 09. ПЗ. 021

Исполнитель: студент группы КМБ – 06 Малинин В.С.

Руководитель: доцент, к.т.н. Емченко В. С.

Задание:

Выполнить технологическую схему сталеплавильного комплекса производительностью кислородного конвертора 2,5 млн.тонн. УНРС 1200/100мм 2 .

В расчетно-конструкторской части необходимо:

— выполнить схему технологических грузопотоков кислородно-конверторного комплекса;

— выбрать емкость конвертеров;

— рассчитать потребное количество основного технологического оборудования;

— рассчитать потребное количество МНЛЗ;

2. Миксерное отделение;

4. Бункерное устройство для сырья (дозаторы);

5. Участок подготовки металлолома;

6. Участок шлакопереработки;

7. Установка МНЛЗ;

10. Кислородный комплекс;

11. Известково-доломитовый комплекс;

12. Копровый цех;

13. Участок шлаковых отвалов.

Технические данные конвертора:

Годовая производительность кислородного конвертора 2,5 млн.тонн

Продолжительность цикла плавки — 40 мин.;

Выход годной стали с 1 – й плавки — 90 %;

Выход годной заготовки после разливки на МНЛЗ — 98 %;

Коэффициент загрузки конвертора — 0,8;

Сечение сляба □ — 1200 мм / 100 мм 2

75 % чугуна, 25 % металлолома;

Содержание

Введение……………………………………………………………………………………. 4
1 Общая часть………………………………………………………………………………. 5
1.1 Кислородно-конвертерное производство стали…………………………………………. 5
1.2 Производительность конвертерного цеха ………………………………………………. 7
1.3 Основные грузопотоки цеха ……………………………………………………………… 9
1.4 Устройство кислородного конвертора ………………………………………………….. 9
1.5 Шихтовые материалы ……………………………………………………………………. 13
1.6 Технология плавки………………………………………………………………………… 13
1.7 Машины непрерывного литья заготовок………………………………………………… 15
2 Расчетная часть….……………………..………………………………………………….. 17
Приложение А…………………………………………………………………………… 21
Список используемой литературы………………………………………………………. 22

Введение

Развитие сталеплавильного производства в мире характеризуется вытеснением мартеновского способа и расширением кисло­родно-конвертерного и электросталеплавильного способов вы­плавки стали с увеличением единичной мощности сталеплавиль­ных агрегатов. Но вместе с заменой мартеновских печен кислородными конвертерами возникла проблема использования стального лома, поскольку доля его в шихте кислородных кон­вертеров составляет около 25 %. В связи с этим получают даль­нейшее развитие электродуговые печи, работающие в основном на металлоломе. Таким образом, основное направление увеличе­ния производства стали на ближайшее время — это сочетание кислородно-конвертерного и электросталеплавильного способов. При этом принимаются меры по увеличению интенсивности про­дувки конвертеров кислородом, сокращающей длительность плавки.

Применение в кислородно-конвертерных цехах систем автома­тизации позволяет повысить их производительность, улучшить качество стали, снизить расход кислорода и ферросплавов. Наи­более перспективно управление процессом плавки с помощью ЭВМ на базе динамической модели. Получит дальнейшее развитие выплавка стали в конвертерах с донным газокислородным дутьем, которые требуют цехов меньшей высоты, чем обычные кислородно-конвертерные; в ряде случаев они могут быть установлены в су­ществующих мартеновских цехах.

Преимущества непрерывного литья заготовок — не только в сокращении цикла металлургического производства, но, глав­ное, — повышении качества отливок в связи с высокой степенью их однородности и больших технико-экономических преимуще­ствах, которые определяли весьма высокие темпы его внедрения.

Дальнейшее развитие МНЛЗ будет идти в сочетании с соз­данием новых высокопроизводительных агрегатов большой еди­ничной мощности и автоматизации систем управления работой конвертеров и электродуговых печей. Увеличение скорости раз­ливки стали будет связано с разработкой новых конструкций кристаллизаторов с равномерным теплоотводом по периметру и более эффективным использованием длины.

Одним из главных направлений в металлургическом произ­водстве является совмещение непрерывной разливки стали с про­каткой и создание совершенных конструкций литейно-прокатных агрегатов. Совмещение разливки и прокатки стали является важным этапом на пути к созданию полностью автоматизирован­ного непрерывного процесса получения проката из жидкой стали.

Общая часть

Кислородно-конвертерное производство стали

Впервые в мировой практике продувка чугуна кислородом была осуществлена инженером Н. И. Мозговым на машиностроительном заводе «Большевик» в г. Киеве в 1933 году. В период 1937—39 гг. в АН УССР была проведена серия опытов по продувке кислоро­дом чугуна в ковшах с целью снижения содержания кремния, марганца и углерода. В 1944 г. продували чугун кислородом в конвертерах на Мытищинском машиностроительном заводе «Динамо», а за период 1944—52 годы экспериментировали про­дувку кислородом конвертеров вместимостью до 12,5 т различными способами: боковым, донным и подачей сверху. Б 1945г. был пущен первый кислородный конвертер на Тульском машинострои­тельном заводе, а в 1955—1957 гг. введены в строй конвертерные печи на Днепропетровском и Криворожском металлургических заводах.

Большой вклад в развитие кислородного способа производства стали внес коллектив ЦНИИЧМ под руководством акад. И. П. Бар­дина. В зарубежной практике начали применять кислород в кон­вертерном производстве в Австрии (фирма «Фёст») с 1949 г.

В последние годы кислородно-конвертерный способ получения стали стал ведущим, вытеснив ранее господствовавший мартенов­ский способ, и обеспечивает выплавку большей часта мирового производства стали.

Первоначально предполагалось выплавлять в кислородных конвертерах рядовые углеродистые стали, в основном низкоуглеродистые для производства тонкого листа. Теперь этим способом выплавляют высокоуглеродистые и легированные стали, не уступающие мартеновской соответствующих марок. Он развивается такими прогрессирующими темпами, которых не знала сталепла­вильная промышленность.

Увеличение производства стали будет происходить и дальше благодаря строительству новых мощных кислородно-конвертер­ных и электросталеплавильных цехов при полном прекращении строительства мартеновских печей.

Такое изменение структуры сталеплавильного производства диктуется значительными технико-экономическими преимуще­ствами кислородно-конвертерного способа выплавки стали по сравнению с мартеновским: более высокая производительность на единицу выплавляемой стали, меньшие капитальные затраты, более благоприятные условия для механизации и автоматизации производственных процессов и совмещения процесса выплавки стали с ее непрерывной разливкой.

Развитие конвертерного способа производства стали идет по пути увеличения единичной вместимости конвертеров с одновре­менным повышением интенсификации работы и расширением сор­тамента выплавляемой стали.

Производительность большегрузного кислородного конвертера в несколько раз превышает производительность самых мощных мартеновских печей; например, производительность одного кон­вертера вместимостью 400 т превышает производительность 600-т мартеновской печи в 8—10 раз. Современный конвертерный цех с тремя-четырьмя конвертерами вместимостью по 400 т каждый, два-три из которых работают непрерывно, при автоматизации и механизации производства может выдавать плавки с циклом 35—40 мин, что соответствует производительности 12—20 млн. т в год.

При создании мощных кислородно-конвертерных цехов важно выбрать оптимальную вместимость агрегата, что решается техни­ко-экономическими расчетами. С увеличением вместимости кон­вертеров показатели работы цеха улучшаются, что видно из сле­дующих данных.

Вместимость конвертера, т 200 300 400
Капиталовложения, % * 90 80 75
Производительность труда, % * 125 165 190
Себестоимость стали, % * 99,3 98,4 97,8

* за 100% приняты показатели до 150 – т конвертора.

Как видим, лучшими технико-экономическими показателями обладают конвертеры вместимостью 400 т. Дальнейшее повышение вместимости конвертеров будет зависеть в значительной степени от создания высокопроизводительных машин непрерывного литья заготовок (МНЛЗ).

Способ продувки ванны кислородом сверху получил название кислородно-конвертерного; в настоящее время он применяется наиболее широко и обладает большой технологической гибкостью. Шихту (лом п жидкий чугун), загруженную в конвертер, подвер­гают продувке технически чистым кислородом через фурму, кото­рая вводится сверху по оси конвертера. Изменением положения фурмы и давления кислорода можно в широких пределах управ­лять процессами расплавления шихты, усвоения кислорода рас­плавом, окисления фосфора и углерода, шлакообразования. Эф­фективность кислородно-конвертерного процесса зависит от реше­ния следующего комплекса вопросов: улучшение подготовки лома и ускорение его завалки; сокращение длительности цикла плавки; интенсификация продувки с применением многоструйных фурм; освоение передела низкомарганцовистого чугуна; широкое применение систем «автоматического управления плавкой и цехом в целом; усовершенствование газоочистки. К недостаткам спо­соба относится невозможность увеличения доли, металлолома в шихте, большой угар (до 13-19 %) и дымообразование при продувке.

Технологический процесс производства стали в кислородных конвертерах требует большого количества мягкообожженной из­вести. Ее расход составляет порядка 80 кг на 1 т стали. Обжиг известняка с целью получения конвертерной извести производят в обжиговых печах трех типов — шахтных, вращающихся бара­банных и кипящего слоя. Для мощных кислородно-конвертерных цехов известь производят в специализированных известково-обжигательных отделениях, оснащенных вращающимися и шахтными обжиговыми печами.