ГОСТ на сварку нержавеющей стали

Сварка нержавейки, электроды

Сварка высоколегированных сталей и сплавов на железоникелевой и никелевой основах осуществляется двумя видами электродов: электродами для сварки коррозионно-стойких материалов и электродами для сварки жаростойких и жаропрочных сталей и сплавов.

Согласно действующей классификации к высоколегированным сталям относят сплавы, содержание железа в которых более 45%, а суммарное содержание легирующих элементов не менее 10%, считая по верхнему пределу при концентрации одного из элементов не менее 8% по нижнему пределу. К сплавам на никелевой основе относят сплавы с содержанием не менее 55% никеля. Промежуточное положение занимают сплавы на железоникелевой основе.

В соответствии с ГОСТ 10052-75 электроды для сварки высоколегированных коррозионно-стойких, жаростойких и жаропрочных сталей и сплавов по химическому составу наплавленного металла и механическим свойствам металла шва и наплавленного металла классифицированы на 49 типов (например, электроды типа Э-07Х20Н9, Э-10Х20Н70Г2М2Б2В, Э-28Х24Н16Г6). Наплавленный металл значительной части электродов, регламентируется техническими условиями предприятий — изготовителей.

Химический состав и структура наплавленного металла электродов для сварки высоколегированных сталей и сплавов отличаются — и иногда весьма существенно — от состава и структуры свариваемых материалов. Основными показателями, решающими вопрос выбора таких электродов, является обеспечение: основных эксплуатационных характеристик сварных соединений (механических свойств, коррозионной стойкости, жаростойкости, жаропрочности), стойкости металла шва против образования трещин, требуемого комплекса сварочно-технологических свойств.

Электроды для сварки высоколегированных сталей и сплавов имеют покрытия основного, рутилового и рутилово-основного видов. Из-за низкой теплопроводности и высокого электросопротивления скорость плавления, а следовательно и коэффициент наплавки электродов со стержнями из высоколегированных сталей и сплавов существенно выше, чем у электродов для сварки углеродистых, низколегированных и легированных сталей.

Вместе с тем повышенное электросопротивление металла электродного стержня обуславливает необходимость применения при сварке пониженных значений тока и уменьшения длины самих стержней (электродов). В противном случае из-за чрезмерного нагрева стержня возможен перегрев покрытия и изменение характера его плавления, вплоть до отваливания отдельных кусков.

Сварка, как правило, производится постоянным током обратной полярности.

Электроды для сварки коррозионно-стойких сталей и сплавов

Электроды этой группы обеспечивают получение сварных соединений, обладающих требуемой стойкостью против коррозии в атмосферной, кислотной, щелочной и других агрессивных средах.

Некоторые марки электродов данной группы имеют более широкую область применения и их можно использовать не только для получения соединений с требуемыми коррозионной стойкостью, но и в качестве электродов, обеспечивающих высокую жаростойкость и жаропрочность металла шва.

табл.1

Марка электрода Тип электрода по ГОСТ 10052-75 или тип наплавленного металла Диаметр, мм Основное назначение
УОНИ-13/НЖ, 12Х13 Э-12Х13 2,0; 2,5; 3,0; 4,0; 5,0 Сварка хромистых сталей типа 08Х13 и 12Х13
ОЗЛ-22 Э-02Х21Н10Г2 3,0; 4,0 Сварка оборудования из сталей типа 04Х18Н10, 03Х18Н12, 03Х18Н11, работающего в окислительных средах, подобных азотной кислоте
ОЗЛ-8 Э-07Х20Н9 2,0; 2,5; 3,0; 4,0; 5,0 Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК
ОЗЛ-8С 08Х20Н9КМВ 2,5; 3,0; 4,0 Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК
ОЗЛ-14 Э-07Х20Н9 3,0; 4,0 Сварка сталей типа 08Х18Н10, 12Х18Н9 и 08Х18Н10Т, когда к металлу шва не предъявляют жесткие требования стойкости к МКК
ОЗЛ-14А Э-04Х20Н9 3,0; 4,0; 5,0 Сварка сталей типа 08Х18Н10, 08Х18Н10Т, 06Х18Н11 и 08Х18Н12Т, когда к металлу шва предъявляют требования стойкости к МКК
ОЗЛ-36 Э-04Х20Н9 3,0; 4,0; 5,0 Сварка сталей типа 08Х18Н10, 06Х18Н11, 08Х18Н12Т и 08Х18Н10Т, когда к металлу шва предъявляют требования стойкости к МКК
ЦЛ-11 Э-08Х20Н9Г2Б 2,0; 2,5; 3,0; 4,0; 5,0 Сварка сталей типа 12Х18Н10Т, 12Х18Н9Т, 08Х18Н12Т и 08Х18Н12Б, когда к металлу шва предъявляют жесткие требования стойкости к МКК
ЦЛ-11С/Ч Э-08Х20Н9Г2Б 2,5; 3,0; 4,0 Сварка сталей типа 08Х18Н10, 08Х18Н12Б и 08Х18Н10Т, когда к металлу шва предъявляют требования стойкости к МКК
ОЗЛ-7 Э-08Х20Н9Г2Б 2,0; 2,5; 3,0; 4,0; 5,0 Сварка сталей типа 08Х18Н10, 08Х18Н12Б и 08Х18Н10Т, когда к металлу шва предъявляют жесткие требования стойкости к МКК
ЦТ-15 Э-08Х19Н10Г2Б 2,0; 2,5; 3,0; 4,0; 5,0 См. группу электродов для сварки жаростойких и жаропрочных сталей и сплавов
ЦЛ-9 Э-10Х25Н13Г2Б 3,0; 4,0; 5,0 Сварка двухслойных сталей со стороны легированного слоя из сталей типа 12Х18Н10Т, 12Х18Н9Т и 08Х13, когда к металлу шва предъявляют требования стойкости к МКК
ОЗЛ-40 08Х22Н7Г2Б 3,0; 4,0 Сварка сталей марок 08Х22Н6Т и 12Х21Н5Т
ОЗЛ-41 08Х22Н7Г2М2Б 3,0; 4,0 Сварка стали марки 08Х21Н6М2Т
ОЗЛ-20 Э-02Х20Н14Г2М2 3,0; 4,0 Сварка оборудования из сталей типа 03Х16Н15М3 и 03Х17Н14М2, работающего в средах высокой агрессивности
ЭА-400/10У; ЭА-400/10Т 08Х18Н11М3Г2Ф 2,0; 2,5; 3,0; 4,0; 5,0 Сварка оборудования из сталей типа 08Х18Н10Т и 10Х17Н13М2Т, работающего в агрессивных средах при температуре до 350 С, когда к металлу шва предъявляют требования стойкости к МКК
НЖ-13 Э-09Х19Н10Г2М2Б 3,0; 4,0; 5,0 Сварка оборудования из сталей типа 10Х17Н13М3Т, 08Х21Н6М2Т и 10Х17Н13М2Т, работающего при температуре до 350 С, когда к металлу шва предъявляют требования к стойкости к МКК
НЖ-13С Э-09Х19Н10Г2М2Б 3,0; 4,0 Сварка оборудования из сталей типа 10Х17Н13М2Т, 10Х17Н13М3Т и 08Х21Н6М2Т, работающего при температуре до 3500С, когда к металлу шва предъявляют требования стойкости к МКК
НИАТ-1 Э-08Х17Н8М2 2,0; 2,5; 3,0; 4,0; 5,0 Сварка сталей типа 08Х18Н10, 12Х18Н10Т и 10Х17Н13М2Т, когда к металлу шва предъявляют требования стойкости к МКК
ОЗЛ-3 14Х17Н13С4Г 3,0; 4,0; 5,0 Сварка оборудования из стали 15Х18Н12С4ТЮ, работающего в средах повышенной агрессивности, когда к металлу шва не предъявляют требования стойкости к МКК
ОЗЛ-24 02Х17Н14С5 3,0; 4,0 Сварка оборудования из сталей типа 02Х8Н20С6, работающего в условиях производства 98%-ной азотной кислоты
ОЗЛ-17У 03Х23Н27М3Д3Г2Б 3,0; 4,0 Сварка оборудования из сплавов марок 06ХН28МДТ и 03ХН28МДТ и стали марки 03Х21Н21М4ГБ преимущественно толщиной до 12 мм, работающего в средах серной и фосфорной кислот с примесями фтористых соединений
ОЗЛ-37-2 03Х24Н26М3Д3Г2Б 3,0; 4,0 Сварка оборудования из сплавов марок 03Х23Н25М3Д3Б, 06ХН28МДТ и 03ХН28МДТ и стали марки 03Х21Н21М4ГБ преимущественно толщиной до 12 мм, работающего в средах серной и фосфорной кислот с примесями фтористых соединений
ОЗЛ-21 Э-02Х20Н60М15В3 3 Сварка оборудования из сплавов типа ХН65МВ и ХН60МБ, работающего в высокоагрессивных средах, когда к металлу шва предъявляют требования стойкости к МКК
ОЗЛ-25Б Э-10Х20Н70Г2М2Б2В 3,0; 4,0 См. группу электродов для сварки жаростойких и жаропрочных сталей и сплавов

Электроды для сварки жаростойких и жаропрочных сталей и сплавов

Электроды этой группы обеспечивают получение сварных соединений с требуемой жаростойкостью и/или жаропрочностью. Жаростойкими сварными соединениями являются соединения, обладающие высокой стойкостью против химического разрушения поверхности в газовых средах при температурах свыше 550-6000С. Жаропрочными сварными соединениями являются соединения, работающие при этих температурах в нагруженном состоянии в течение определенного времени (жаропрочные соединения должны обладать при этом достаточной жаростойкостью).

Некоторые марки электродов, предназначенные для сварки жаростойких и/или жаропрочных материалов, используются для сварки коррозионно-стойких и разнородных сталей и сплавов.

Как осуществляется сварка нержавеющей стали, какие методики доступны

В нашем понимании закрепилась мысль, что сварка нержавеющей стали имеет определенные нюансы, однако этот процесс вполне выполним, даже в домашних условиях. Под нержавейкой понимают материал с антикоррозийными свойствами, которые проявляются, благодаря добавлению в состав хрома. В результате реакции хрома с кислородом образуется своеобразный оксидный барьер, защищающий сталь от окисления.

Зачастую вместе с хромом в составе нержавейки присутствуют такие элементы, как никель, молибден или титан. Эти элементы называются вспомогательными, от их наличия и количества зависят физико-химические свойства полученного сплава. Именно об этих свойствах должен знать сварщик, готовясь к проведению сварочных работ.

Сталь, традиционно именуемая нержавейкой, может иметь разные составы и, как следствие, по-разному реагировать на ведение сварки. Прежде всего, следует отметить, что материал можно разделить на несколько видов.

Аустенитная сталь характерна тем, что в своем составе имеет достаточно много хрома. В долевом соотношении его количество составляет 18%. Также в такой нержавейке содержится до 10% никеля. Примером может служить пищевая нержавейка, маркируемая по ГОСТ, как 08Х18Н10. В другой классификации она имеет название AISI 304. Применяется эта сталь, как при строительстве, так и в производстве посуды. К физическим свойствам можно отнести отсутствие магнитных свойств, пластичность, прочность и химическую стойкость.

Мартенситная нержавейка, благодаря своей специфической внутренней структуре, выделяется в особый класс. Она отличается низким содержанием углерода, который составляет всего 0,12% общего количества вещества. В составе мартенситной стали содержится 13% хрома. В отличие от предыдущего вида, данный материал прочен, но хрупок. Может использоваться в качестве сырья для производства режущих инструментов, а также крепежной фурнитуры при условии эксплуатации в неагрессивных средах. Подлежит дополнительной обработке. Так, при воздействии температуры нержавейка приобретает вязкость. Обозначается, как AISI 410 или 12х13, согласно ГОСТ.

Среднее положение по содержанию хрома занимает ферритная сталь. После ее закалки наблюдается повышенная устойчивость к внешним факторам агрессивной среды. Считается, что этот сплав наиболее трудно поддается сварке. Обозначается подобная сталь по ГОСТ 12х17 или AISI 430. Число 12 указывает на процентное содержание хрома.

Проблемы

Основная сложность сварочных работ обусловлена тем, что нержавеющая сталь считается высоколегированной. Компоненты, входящие в его состав, оказывают непосредственное влияние на результат работы. Ведущая роль здесь отводится хрому. В некоторых материалах его процентное соотношение может достигать 30. Тем не менее, от хрома невозможно «отказаться», так как именно он, наряду с никелем, титаном, молибденом и марганцем, придает металлу антикоррозийные свойства. Приходится учитывать ряд особенностей сплава.

  • Нержавеющая сталь обладает высоким коэффициентом температурного расширения. Если сварка ведется без выдержки нужного зазора, особенно при значительной толщине заготовок, могут наблюдаться трещины. Они возникают в процессе остывания, когда металл начинает «стягиваться».
  • Низкая теплопроводность не позволяет быстро распределяться теплу, как в случае сварки низкоуглеродистых сталей. В результате этого наблюдаются локальные зоны высокой температуры, что приводит к проплавлению заготовок насквозь, особенно если их толщина невелика. Причем снижение силы тока никак не влияет на ситуацию.
  • Наблюдается такое явление, как межкристаллическая коррозия. Она вызвана появлением в структуре металла прослоек, содержащих железо и карбид хрома. Прогрессировать коррозия начинает после нагрева детали до 500°C градусов. Чтобы этого избежать, приходится с большой степенью точности настраивать параметры сварки, а сформированный шов необходимо сразу охлаждать. Самый простой способ – охлаждение в воде, однако он приемлем только для аустенитной нержавейки.

Не стоит забывать про еще один фактор, значительно усложняющий сварочный процесс. Высокое электрическое сопротивление и низкая теплопроводность материала приводит к тому, что при использовании хромоникелевых электродов наблюдается сильное нагревание последних. Выходом из данной ситуации является подбор электродов не только по диаметру, но и по длине.

Подготовительные работы

Сваривать детали из нержавеющей стали можно как обычным инвертором, так и с помощью аргонно-дугового сварочного аппарата. Какой бы способ сварки ни выбрал мастер, в любом случае необходимо провести подготовительные работы.

  • Первым делом заготовки следует очистить от пыли и грязи. Посторонние частицы на поверхности металла становятся причиной некачественного и неровного шва.
  • Если работа ведется с заготовками, имеющими относительно небольшую толщину (до 1,5 мм), то кромки прижимаются друг к другу вплотную. Для этого рекомендуется воспользоваться струбцинами.
  • При толщине металла более 4 мм приходится разделывать кромки. Обычно их обтачивают напильником или шлифовальной машиной под углом 45° градусов. Такая своеобразная канавка позволяет добиться проваривания по всей толщине. Чем больше толщина заготовки, тем больший угол следует создать на кромках.
  • Если тонкие листы нержавейки скрепляются плотно, то массивные заготовки требуют зазора между кромками. Имеющимися приспособлениями выставляется зазор в 2 мм. Он должен оставаться постоянным в течение всего процесса.
  • Когда толщина металла превышает 7 мм, требуется его предварительный прогрев.

Способы

Различают несколько технологий, по которым ведется сварка нержавейки. Они зависят от имеющегося в наличии сварочного аппарата. Аргонодуговая сварка (сварка в режиме TIG) осуществляется инверторами, предназначенными для работы в среде аргона. Сварка ведется неплавящимся вольфрамовым электродом. В зону контакта электрода подается аргон через специальную горелку.

Классический режим сварки подразумевает применение плавящихся покрытых электродов. Сварочные инверторы, работающие в режиме MMA, считаются самыми доступными и недорогими. Ручная дуговая сварка применима для нержавейки только с условием использования специальных электродов.

Сварка в полуавтоматическом режиме (MIG/MAG) требует наличие проволоки из нержавеющей стали. Инверторный полуавтомат оснащен механизмом подачи проволоки, а также горелкой, через которую поступает защитный газ в зону формирования шва.

Холодная сварка принципиально отличается от представленных выше способов. Материал не нужно нагревать и плавить. Соединение деталей осуществляется под воздействием высокого давления.

Можно говорить лишь о статистике, которая показывает, что некоторые способы нашли свое применение в промышленности и в домашних условиях, а другие, наоборот, в силу технологичности не стали массовыми. Однако выбор зависит не от популярности, а от конкретных условий сварки и требований к полученному результату.

Сварка аргоном

Чтобы вести данный вид работ, необходимо иметь в наличии инвертор AC/DC TIG, предназначенный для ведения аргонодуговой сварки постоянным и переменным током. Сварка производится в ручном режиме с помощью неплавящихся вольфрамовых электродов. Так как подобные инверторы можно встретить у любого начинающего мастера, то данный вид сварки нержавейки доступен в домашних условиях. При этом результат получается достаточно качественным. Обычно к подобному способу прибегают при сваривании нержавеющих труб при монтаже магистралей для жидкостей или газов.

Можно выделить основные нюансы аргоновой сварки.

  • Дугу необходимо поджигать бесконтактным способом, во избежание попадания вольфрама с электрода в зону расплавленного металла. Часто мастера зажигают дугу на стороне, а впоследствии ее постепенно перемещают в зону формирования будущего шва.
  • Как было указано выше, допустима сварка постоянным и переменным током.
  • В зависимости от толщины детали выбирается режим сварки. Под ним подразумеваются такие параметры, как диаметр вольфрамового электрода, присадка, показатели сварного тока, скорость подачи аргона и скорость формирования шва.
  • В качестве присадки используется проволока из легированной стали. Степень ее легирования должна быть выше, нежели у самого материала.
  • Не допускается ведение колебательных движений электродом, это может привести к нарушению зоны сварки и окислению металла.

Важным моментом является окончание сварки, так как на данном этапе можно существенно сэкономить вольфрамовый электрод. После наложения шва необходимо в течение некоторого времени продолжить подачу аргона. В результате того, что раскаленный электрод защищен газом, он не окисляется. Если обеспечить подачу присадки, то скорость сварки существенно увеличится, к тому же автоматизация повышает точность и эстетичность шва.

Ручная дуговая

В силу распространенности инверторов MMA такой режим работы считается традиционным. Если сварщик обладает достаточным опытом ведения работ покрытыми электродами, то технология сварки нержавейки ничем не будет отличаться от работ с черными металлами. Отметим, что при этом качество шва оставляет желать лучшего. При выборе электродов необходимо основываться на том, что все расходные материалы для нержавеющей стали делятся на два вида.

  1. Электроды с рутиловым покрытием предназначены для выполнения работ постоянным током с обратной полярностью. Имеет место разбрызгивание металлов, что является одним из недостатков сварки в режиме MMA.
  2. Электроды с покрытием из карбоната магния и кальция выбираются только для определенных сплавов.

Более подробное описание по подбору расходных материалов для каждого типа нержавейки прописаны в ГОСТ 10052-75.

Полуавтоматическая

Если использовать полуавтомат, работающий в режиме MIG/MAG, то в этом случае также можно сваривать нержавейку. По качеству и эстетике результата данный режим считается приоритетным, независимо от толщины заготовок. Источником тока служит инверторный полуавтомат, но подойдет и любой альтернативный выпрямитель тока.

Масса подается на одну из привариваемых деталей, а плюсовым электродом служит специальная горелка. Эта горелка выполняет одновременно две функции: обеспечивает подачу защитного газа и представляет собой электрод. Присадочная проволока подается встроенным устройством. Современные инверторные полуавтоматы снабжены удобным механизмом, позволяющим загружать проволоку в готовых бобинах.

Проволока для полуавтоматической сварки нержавейки также состоит из нержавеющей стали. Ее диаметр, как и прочие параметры, определяются толщиной заготовок.

Например, при толщине листа металла в 1,5 мм рекомендуется использовать проволоку диаметром 1 мм при силе тока в 80 – 100 А. Скорость подачи проволоки составляет 160 м/час. Если же толщина металла достигает 5 мм, то диаметра проволоки увеличивается до 1,6 мм, а сила тока – до 300 А.

В промышленности зачастую требования к сварному шву повышены, так как он должен противостоять агрессивному воздействию среды, поэтому применяют порошковую проволоку. Она представляет собой трубку, внутри которой размещен флюс. Это дает дополнительную защиту в зоне сварки. По себестоимости работы с полуавтоматической сваркой несколько выше, чем работы в режиме ММА, причем описанный метод требует от сварщика определенного навыка.

Холодная

Данный метод характерен тем, что не требует нагрева деталей и применения специального оборудования. В качестве скрепляющего материала используется двухкомпонентный клей. Состав сохраняет прочность и целостность после застывания. Место сварки не боится влаги, поэтому технология применяется при заделывании течи в емкостях.

Алгоритм работ достаточно прост. Необходимо зачистить и обезжирить поверхности, а затем нанести царапины. Клей отрезается в необходимом количестве. Состав следует размять в руке, слегка разогрев его и перемешав компоненты. После застывания шов можно обрабатывать.

Важная особенность такого способа заключается в том, что клеем можно заделывать отверстия, однако шов не способен выдерживать сильные нагрузки. Не рекомендуется использовать холодную сварку, как способ соединения деталей. Популярность таких работ обусловлена малыми затратами и относительной простотой их проведения.

Методы сваривания и типы электродов

Сваривание нержавеющей стали аргонно-дуговой сваркой

Сварка нержавеющей стали в среде инертного газа нашла широкое применение среди ремонтных автомастерских и автомобилестроительных гигантов. Изоляция электрической дуги от среды окружающего воздуха препятствует образованию окислов и улучшает качество сварного шва.

Подготовка свариваемых поверхностей для такого метода сваривания заключается в следующих этапах:

  • обработка металлической щеткой, наждачной бумагой
  • обезжиривание ацетоном, спиртом, растворителем
  • нанесение флюсующих паст и составов на месте будущего шва
  • предварительный подогрев газокислородной горелкой для снятия внутренних напряжений металла при изменении температуры при наложении шва.

Технология сварки: регулируется сила тока, расход аргона, согласно справочным таблицам, которые учитывают толщину металла и марку нержавеющей стали. После образования ванны, требуемой толщины, производится перемещение горелки дальше вдоль шва. Быстрое остывание шва способствует его сохранению стойкостных качеств и сопротивляемость коррозии.

Важно! Плавное перемещение сварки необходимо для равномерного изменения градиента температуры по поверхности металла. При несоблюдении этого условия, могут возникнуть напряжения в толще поверхностей, разлив ванны из ожидаемых границ шва.

Необходимое оборудование для сваривания нержавеющей стали аргонно-дуговой сваркой:

  • инструмент для зачистки поверхности
  • аргоновый баллон, с непросроченной датой проверки
  • сварочный аппарат для сварки нержавеющей стали в комплекте с редуктором, шлангами, держателем электрода
  • вольфрамовый электрод
  • присадочная проволока и флюсующие пасты
  • средства индивидуальной защиты.

Классификация высоколегированных сталей

Прежде чем приступить к вопросу выбора электродов для сварки нержавейки, необходимо определиться с самим понятием этого материала. Народная терминология делит все стали на два основных класса — рассматриваемую нержавейку и так называемую чернуху. Известными большинству признаками, отличающими нержавейку от чернухи, являются:

  • внешний вид — нержавейка блестящая (хотя не всегда), без следов окалины и коррозии;
  • вязкость и меньшая твердость, что легко определяется зубилом, напильником, сверлом, ножовкой или абразивным кругом;
  • народным методом является также проба магнитом — нержавейка не магнитится, что также не всегда соответствует истине.

Приведенного багажа знаний явно недостаточно для выполнения такого ответственного соединения, как сварное, также недопустимо охватывать одним термином многочисленную группу сталей, классифицируемых ГОСТом как нержавеющие.


К классу нержавеющих относятся стали, обладающие способностью работать в условиях коррозионно-агрессивных сред, а эта способность определяется наличием легирующих элементов, в основном, хрома и никеля.

Официальным документом, регламентирующим классификацию нержавеющих сталей, является межгосударственный стандарт ГОСТ 5632–14 . В соответствии с его определениями к легированным нержавеющим сталям относятся стали с содержанием хрома не менее 10,5% и содержанием углерода не более 1,2%, к коррозионно-стойким сталям и сплавам — обладающие стойкостью против любых видов коррозии (химической, электрохимической, межкристаллитной, коррозии под напряжением и других).

Классы нержавеющей легированной стали

Конкретное назначение и область применения стали определяется ее внутренней структурой — химическим составом и типом кристаллической решетки, которые в свою очередь также зависят от метода плавки, термообработки, прокатки. Не углубляясь в теорию металловедения, приведем деление легированных нержавеющих сталей на структурные классы в соответствии с ГОСТ 5632–14 :

  • мартенситный;
  • мартенситно-ферритный;
  • ферритный;
  • аустенитно-мартенситный;
  • аустенитно-ферритный;
  • аустенитный.

Структура стали во многом определяет и такое ее технологическое качество, как свариваемость. Наличие хрома в высоколегированных коррозионно-стойких сталях определяет характерное для них понятие «межкристаллитная коррозия». При сварке на границе зон термического влияния образуются зернистые структуры карбида хрома с пониженной прочностью и склонностью к хрупкому разрушению. Это качество во многом определяет специальные требования к технологии сварки данных сталей и сварочным материалам для ее выполнения.

Маркировка нержавейки

Присоединяясь к народной терминологии — нержавейка — рассмотрим ее обозначение согласно требованиям ГОСТ 5632–14 . Для нержавейки обозначение соответствует общероссийской системе обозначения сталей, унаследованной от советской. Первые две цифры обозначают содержание углерода в сотых долях процента, далее последовательно буквой русского алфавита указывается легирующий элемент и его содержание в процентах. Если за буквой отсутствуют цифры, то содержание элемента не превышает 1 процент.

Не перечисляя все химические элементы, приведем обозначения некоторых, характерных для нержавеющих сталей: Х — хром, Н — никель, Т — титан, В — вольфрам, М — молибден. Легирующими элементами могут быть и неметаллы. В обозначениях многих сталей по ГОСТ 5632–14 можно увидеть буквы, А — азот, Г — марганец, Е — селен.

Как видим, обозначение нержавейки несет в себе информацию о ее химическом составе, который в основном определяет и химический состав применяемых сварочных материалов.

Способ сварки нержавеющей стали полуавтоматом в среде углекислого газа

Для снижения брака сварных швов в ответственных узлах используют сварку в среде углекислого газа. Принцип работы полуавтомата заключается в механической подаче сварочной проволоки без участия сварщика. Основными элементами такого аппарата является основной блок, подключаемый к сети, переносной блок с держателем бобины проволоки, держатель, баллон с углекислотой.


Настроив скорость подачу проволоки и скорость истекания газа, сварщик имеет возможность полностью сосредоточиться на наложении шва и его качеству. Принято различать 3 вида полуавтоматов в зависимости от условия и источника получения ванны:

  1. Аппарат с порошковой проволокой
  2. Аппарат, работающий в среде защитного газа
  3. Аппарат для сварки со слоем флюса

Сварка вольфрамовыми электродами в защитной среде аргона

Технология сварки вольфрамовыми электродами в защитной среде аргона (TIG) используется тогда, когда металл слишком тонкий или к сварочному соединению имеются высокие ожидания.

Такая технология отлично зарекомендовала себя для сваривания труб, что используются для транспортировки газов и жидкостей под высоким давлением. Она обеспечивает высокие показатели прочности и надежности шва.


Сварка вольфрамовыми электродами

  • Можно использовать постоянный или переменный ток;
  • В качестве присадки лучше использовать проволоку;
  • Электрод необходимо направлять точно в зону стыка, чтобы не провоцировать окисление шва. Руки не должны дрожать;
  • С обратной стороны шва выполняется поддув аргоном;
  • Для сталей аустенитного класса необходимо охлаждение шва водой.

Важно! Чтобы продлить срок эксплуатации вольфрамового электрода, не выключайте защитный газ сразу после сварки. Сделайте это спустя несколько секунд для уменьшения окисления.

Лазерная сварка

Сегодня мало кого удивишь применением лазера в машиностроении, кораблестроении, авиастроении и других отраслях промышленности. Сварка двух листов металла нержавеющей стали с помощью узконаправленного светового пучка. Особенностью такого метода является локальное по площади воздействие без дополнительного нагрева и изменения свойств в соседних участках. Возможность сваривать очень тонкие листы нержавеющей стали позволило применять лазер при изготовлении высокоточных, дорогостоящих, ответственных компонентов и изделий.


Специфика наложения шва позволяет получить герметично подогнанные плоскости, любой геометрии. При правильном подборе режима работы лазерной установки возможно сваривание нержавеющей стали с другими металлами, чего практически невозможно добиться другими видами сварки. Для данного типа соединения элементов отпадает необходимость в среде защитных газов, флюсующих материалов.

Промышленность предлагает установки различной мощности: для сваривания листов с толщиной несколько десятых долей миллиметра и до нескольких сантиметров. При этом самым главным недостатком такого оборудования является его высокая стартовая стоимость и низкий К.П.Д. менее 5%.

Технология наложения шва лазерной установкой предусматривает обработку от шероховатостей, обезжиривание. Процесс нанесения флюсующих паст при таком процессе можно опустить. Принудительное охлаждение и финишная обработка швов, полученных при лазерной сварке нержавеющих сплавах, не нужно. Во время сваривания нужно исключить попадание посторонних материалов способных воспламениться и привариться к основному материалу.

Контроль качества шва

ГОСТ Р 53525-09 и 18442-80 являются определяющими документами для контроля за качеством полученного сварного шва независимо от примененного метода сварки. Визуальный осмотр помогает выявить крупные дефекты, которые образовались на поверхности шва. Радиометрия, радиоскопия и некоторые другие методы объединены под обобщающим термином радиационный контроль. Свойства вихревых токов широко используют при электромагнитном контроле. С помощью жидкостей, а точнее их просачивания, делают капиллярный анализ или течеискание. Известны также магнитные и тепловой анализы сварного шва. Каждая из этих методик контроля сварки нержавеющей стали расписаны в ГОСТах.

Информация, представленная в этом обзоре, указывает на возможные трудности при осуществлении соединения элементов из различных марок нержавеющей стали. Независимо от выбора способа сварки, предварительная обработка должна предшествовать процессу сваривания. Финишная обработка шва позволяет повысить сопротивление коррозии и продлить срок эксплуатации изделия. Дальнейшее развитие сварочных процессов с применением нержавеющей стали связывают с разработкой новых электродов и обмазок для них. Применение лазерной сварки, несмотря на стоимость соизмеримую с другими методами, требует больших капиталовложений и поэтому расширение такого метода останется ограниченным в ближайшее время.

Сварка покрытыми электродами: особенности и технология

Ручное сваривание покрытыми электродами, или сокращенно ММА, как еще называют этот режим, позволяет получить хорошие результаты по окончанию процесса. Это оптимальная технология сваривания для домашних условий, если не предъявляются какие-то особые требования к сварочному шву.


Сварка покрытыми электродами

Электроды в данном случае подбираются по химическому составу нержавеющей стали. Все типы электродов и правила их подбора содержит ГОСТ 10052-75. Необходимо всего лишь знать марку стали и обратиться к ГОСТу для справочной информации. Чаще всего применяются электроды следующих типов:

  • ЦЛ -11;
  • ОЗЛ-8;
  • УОНИ-13/НЖ;
  • 12×13;
  • НИАТ-1.

Сварочные электроды изготавливаются по ГОСТ 9455-75, ГОСТ 10051-75, ГОСТ 10052-75.

Облегчит сварочный процесс следование таким простым рекомендациям:

  • Сварку следует выполнять постоянным током с обратной полярностью;
  • Использовать электроды большого диаметра;
  • Сила тока должна быть уменьшена приблизительно на 1/5;
  • Предварительно обеспечить охлаждение сварочного шва. Для этого можно подготовить медные пластины или обдув воздухом.

Электроды имеют высокую скорость плавления по причине пониженной теплопроводности и повышенного электросопротивления.

Сварка нержавеющих сталей

В данной статье рассмотрим технологию сварки некоторых легированных хромоникелевых аустенитных сталей, а именно:
— коррозионно-стойких сталей (они же нержавеющие или попросту «нержавейка»);
— жаропрочных и жаростойких сталей.

Технология сварки хромоникелевых аустенитных сталей . Все заготовительные операции на аустенитных сталях, выполняемые методами холодной или горячей обработки, производятся в основном теми же способами и на том же оборудовании, что и для углеродистых конструкционных сталей. Подготовка кромок деталей под сварку должна производиться механическим путем (фрезерованием, строжкой, токарной обработкой). Допускается подготовка кромок сжатой дугой или газофлюсовой резкой, требующей последующей механической зачистки огнерезных кромок на глубину не менее 0,8 мм.
При сборке деталей перед прихваткой и сваркой во избежание образования надрезов и трещин на поверхности основного металла в месте попадания брызг расплавленного металла участки рядом со швом должны быть покрыты одним из видов защитных покрытий.
При изготовлении сварных конструкций из аустенитных сталей могут применяться все способы электрической сварки плавлением. Выбор способа сварки производится с учетом толщины свариваемого металла, размеров и формы конструкции, расположения швов в пространстве и их доступности, требований к сварным соединениям и т. д.
Основной особенностью ручной дуговой сварки аустенитных сталей является необходимость обеспечения требуемого химического состава металла шва при различных типах сварных соединений и пространственных положениях сварки с учетом изменения доли участия основного и электродного металла в металле шва. Это заставляет корректировать состав покрытия с целью обеспечения необходимого содержания в шве феррита и тем самым предупреждения образования в шве горячих трещин. Этим же достигается и необходимая жаропрочность и коррозионная стойкость швов.
Применением электродов с фтористокальциевым покрытием, уменьшающим угар легирующих элементов, достигается получение металла шва с необходимым химическим составом и структурами. Уменьшению угара легирующих элементов способствует и поддержание короткой дуги без поперечных колебаний электрода. Последнее уменьшает и вероятность образования дефектов на поверхности основного металла в результате прилипания брызг.
Состав покрытия электрода определяет необходимость применения постоянного тока обратной полярности (при переменном токе или постоянном токе прямой полярности дуга неустойчива), величину которого определяют по формуле Iсв=kdэ, а коэффициент k в зависимости от диаметра электрода принимают не более 25-30 А/мм. В потолочном и вертикальных положениях силу сварочного тока умень¬шают на 10-30 % по сравнению с силой тока, выбранной для нижнего положения сварки.
Сварку покрытыми электродами рекомендуется выполнять валиками малого сечения и для повышения стойкости против горячих трещин применять электроды диаметром 3 мм с минимальным проплавлением основного металла. Тщательная прокалка электродов перед сваркой, режим которой определяется их маркой, способствует уменьшению вероятности образования в швах пор и трещин, вызываемых водородом. Некоторые марки электродов, рекомендуемые для различных сталей аустенитного класса, в зависимости от условий работы конструкции приведены в табл.1, а их механические свойства — в табл.2.

Таблица 1. Некоторые марки электродов и условия работы высоколегированных сталей и сплавов

Содержание
α-фазы (%) и структура шва

Э 07Х20Н9
Э-08Х19Н10Г2Б
Э-02Х10Н9Б

10Х17НИМ2Т
08Х18Н19Б
08Х21Н6М2Т

20Х20Х14С2
20Х25Н20С2
30Х18Н25С2

Температуры до 900-1100°С Температура до 1050°С; жаростой­кость и жаропрочность ОЗЛ ОЗЛ-9-1 Э-12Х24Н14С2 Э-28Х24Н16Г6

3-10 %
Аустенитно-
карбидная

Для предупреждения перегрева металла и свя­занного с этим укрупне­ния структуры, возмож­ности появления трещин и снижения эксплуата­ционных свойств сварного соединения рекомендует­ся выполнять сварку ва­ликами небольшого сече­ния, применяя для этого проволоку диаметром 2- 3 мм, а в связи с высо­ким электросопротивле­нием аустенитных сталей вылет электрода следует умень­шить в 1,5-2 раза.

Легировать шов можно через флюс (табл. 3) или про­волоку (табл. 4), последнее предпочтительнее, так как обеспечивает необходимую стабильность металла шва.

Таблица 3. Флюсы для электродуговой и влектрошлаковой сварки высоколегированных сталей

Вид сварки

Марка флюса

Автоматическая электродуговая аустенитно-ферритными швами

АНФ-14; АНФ-16; 48-ОФ-Ю; К-8

Автоматическая электродуговая аустенитно-ферритными швами с небольшим запасом аустенита

Автоматическая электродуговая чисто аусте-нитными швами с большим запасом аустенита

Автоматическая электродуговая и электро­шлаковая чисто аустенитными швами с боль­шим запасом аустенита

Электрошлаковая чисто аустенитными швами с большим запасом аустенита

АНФ-1; АНФ-6; АНФ-7; АН-29; АН-292

Таблица 4. Некоторые марки сварочной проволоки для электродуговой сварки под флюсом и электрошлаковой сварки высоколегированных сталей

Марка стали

Условия работы

Марка проволоки
(ГОСТ 2246 — 70)

12Х18Н9
08Х18Н10
12Х18Н10Т
12Х18Н9Т

Стойкость к межкристаллитной коррозии

12Х18Н10Т
08Х18Н10Т
08Х18Н12Т
08Х18Н12Б

Температура выше 350°С;
стойкость к межкристаллитной коррозии

Стойкость к межкри-сталлитной коррозии

08Х18Н10;
12Х18Н10Т
12Х18Н9Т

Сварка в углекислом газе; стойкость к межкристаллитной корро­зии

Температура до 800- 900 °С

20Х23Н13
08Х20Н14С2
20Х23Н18

Температура 800-900 °С

Температура 900- 1100°С

Температура до 1200°С

Св-07Х25Н12Г2Т
Св-06Х25Н12ТЮ
Св-08Х25Н13БТЮ

Д ля сварки используют низкокремнистые фторидные флюсы, создающие в зоне сварки безокислительные или малоокислительные среды, что приводит к минимальному угару легирующих элементов. Для снижения вероятности образования пор в швах флюсы для высоколегированных сталей необходимо прокалить непосредственно перед сваркой при 500-800°С в течение 1-2 ч. Остатки шлака и флюса на поверхности швов, которые могут служить очагами коррозии сварных соединений на коррозионно-и жаростойких сталях, необходимо тщательно уда­лять.
Особенностью электрошлаковой сварки является пониженная чувствительность к образованию горячих трещин, что объясняется малой скоростью перемещения источника нагрева и характером кристаллизации металла сварочной ванны, в результате создаются условия получения чисто аустенитных швов без трещин. Однако длительное пребывание металла шва и околошовной зоны при повышенных температурах увеличивает его перегрев и ширину околошовной зоны, а длительное пребывание металла при температурах 1200-1250°С приводит к изменению его структуры, снижает прочностные и пластические свойства. В результате сварные соединения теплоустойчивых сталей предрасположены к разрушениям в процессе термической обработки или эксплуатации при повышенных температурах.
Перегрев при сварке зоны термического влияния коррозионно-стойких сталей может привести к образованию в ней ножевой коррозии, поэтому для предупреждения указанных дефектов необходима термообработка сварных изделий (закалка или стабилизирующий отжиг). При выборе флюса и сварочной проволоки необходимо учитывать проникновение кислорода воздуха через поверхность шлаковой ванны, что приводит к угару легкоокисляющихся элементов (титана, марганца и др.). Это вызывает необходимость в некоторых случаях защищать поверхность шлаковой ванны путем обдува аргоном.
Электрошлаковую сварку высоколегированных сталей можно выполнять проволочным или пластинчатыми электродами (табл. 5). Изделия большой толщины со швами небольшой протяженности целесообразно сваривать пластинчатым электродом, изготавливать их значительно проще. Но сварка проволокой позволяет в широких пределах, варьируя режимом, изменять форму металлической ванны и характер кристаллизации шва, а это является одним из действенных факторов, обеспечивающих получение швов без горячих трещин.

Толщина
металла,
мм

Электрод

Диаметр,(размеры),
мм

Марка флюса

Зазор, мм

Скорость
подачи
электрода,
м/ч

Сила
сварочного
тока,
А

Сварка нержавейки

12Х18Н10Т. Особенности сварки нержавейки.

Сварка стали – основной технологический процесс практически любого производства изделий из металла. С VII века до нашей эры и до наших дней сварка широко применяется как основной способ образования неразъемных соединений металлов. С самого зарождения и вплоть до XIX века н.э. в применялся метод кузнечной сварки металлов. Т.е. свариваемые детали нагревались и затем спрессовывались ударами молота. Эта технология достигла своего пика к середине XIX века, когда по ней стали изготавливать даже такие ответственные изделия как железнодорожные рельсы и магистральные трубопроводы.

Однако сварные соединения, особенно в массовом, промышленном масштабе отличались невысокой надежностью и нестабильным качеством. Это зачастую приводило к авариям из-за разрушения детали в месте шва.

Открытие электродугового нагрева и высокотемпературного газо-кислородного горения наряду с возросшими требованиями к качеству сварного соединения совершили мощный технологический прорыв в области сварки, в результате чего создалась технология бескузнечной сварки — такой, какую мы привыкли наблюдать сегодня.

С появлением легированной стали процессы сварки усложнились в связи с необходимостью предотвращения карбидации легирующих элементов, в основном – хрома. Появились методы сварки в инертных средах или под флюсом, а также технологии долегирования сварного шва.

Рассмотрим особенности сварки аустенитных сталей на примете наиболее распространенной нержавеющей стали 12Х18Н10Т.

Сталь 12Х18Н10Т относиться к хорошо свариваемым. Характерной особенностью сварки этой стали является возникновение межкристаллитной коррозии. Она развивается в зоне термического влияния при температуре 500-800?С. При пребывании металла в таком критическом интервале температур по границам зерен аустенита выпадают карбиды хрома. Все это может иметь опасные последствия — хрупкие разрушения конструкции в процессе эксплуатации.

Чтобы добиться стойкости стали нужно исключить или ослабить эффект выпадения карбидов и стабилизировать свойства стали в месте сварного шва.

При сварке высоколегированных сталей используют электроды с защитно-легирующим покрытием основного вида в сочетании с высоколегированным электродным стержнем. Применение электродов с покрытием основного вида позволяет обеспечить формирование наплавленного металла необходимого химического состава, а также других свойств путём использования высоколегированной электродной проволоки и долегирования через покрытие.

Сочетание легирования через электродную проволоку и покрытие позволяет обеспечить не только гарантированный химический состав в пределах паспортных данных, но и некоторые другие свойства, предназначенные для сварки аустенитных сталей 12Х18Н10Т, 12Х18Н9Т, 12Х18Н12Т и им подобных.

Содержащийся в электродных стержнях титан при сварке практически полностью окисляется. По этой причине при сварке покрытыми электродами в качестве элемента-стабилизатора используют ниобий. Коэффициент перехода ниобия из стержня при сварке покрытыми электродами составляет 60-65%.

Сварку высоколегированных сталей под флюсом осуществляют с применением или нейтральных по кислороду фторидных флюсов, или защитно-легирующих в сочетании с высоколегированной электродной проволокой. С металлургической точки зрения для сварки высоколегированных сталей наиболее рациональны фторидные флюсы типа АНФ-5, которые обеспечивают хорошую защиту и металлургическую обработку металла сварочной ванны и позволяет легировать сварочную ванну титаном через электродную проволоку. При этом процесс сварки малочувствителен к образованию пор в металле шва из-за водорода. Однако фторидные бескислородные флюсы имеют относительно низкие технологические свойства. Именно низкие технологические свойства фторидных флюсов служат причиной широкого использования для сварки высоколегированных сталей флюсов на основе оксидов.

Сварку высоколегированных сталей для снижения вероятности формирования структуры перегрева, как правило, выполняют на режимах, характеризующихся малой величиной погонной энергии. При этом предпочтение отдают швам малого сечения, получаемым при использовании электродной проволоки небольшого диаметра (2-3мм). Поскольку высоколегированные стали обладают повышенным электросопротивлением и пониженной электропроводностью, то при сварке вылет электрода из высоколегированной стали уменьшают в 1,5-2 раза по сравнению с вылетом электрода из углеродистой стали.

При дуговой сварке в качестве защитных газов используют аргон, гелий (реже), углекислый газ.

Аргонодуговую сварку выполняют плавящимися и неплавящимися вольфрамовыми электродами. Плавящимся электродом сваривают на постоянном токе обратной полярности, используя режимы, обеспечивающие струйный перенос электродного металла. В некоторых случаях (в основном при сварке аустенитных сталей) для повышения стабильности горения дуги и особенно снижения вероятности образования пор из-за водорода при сварке плавящимся электродом используют смеси аргона с кислородом или углекислым газом (до 10%).

Сварку неплавящимся вольфрамовым электродом в основном осуществляют на постоянном токе прямой полярности. В некоторых случаях при наличии в сталях значительного количества алюминия используют переменный ток для обеспечения катодного разрушения оксидной плёнки.

Применение дуговой сварки в атмосфере углекислого газа позволяет снизить вероятность образования пор в металле шва из-за водорода; при этом обеспечивается относительно высокий коэффициент перехода легкоокисляющихся элементов. Так, коэффициент перехода титана из проволоки достигает 50%. При сварке в атмосфере аргона коэффициент перехода титана из проволоки составляет 80-90%. При сварке в углекислом газе сталей, имеющих высокое содержание хрома и низкое содержание кремния, на поверхности шва образуется тугоплавкая трудноудаляемая оксидная плёнка. Её присутствие затрудняет проведение многослойной сварки.

При сварке сталей с малым содержанием углерода (ниже 0,07-0,08%) возможно науглероживание наплавленного металла. Переход углерода в сварочную ванну усиливается при наличии в электродной проволоке алюминия, титана, кремния. В случае сварки глубокоаустенитных сталей некоторое науглероживание металла сварочной ванны в сочетании с окислением кремния снижает вероятность образования горячих трещин. Однако науглероживание может изменить свойства металла шва и, в частности, снизить коррозийные свойства. Кроме того наблюдается повышенное разбрызгивание электродного металла. Наличие брызг на поверхности металла снижает коррозийную стойкость.

Технологии сварки нержавеющих высоколегированных сталей постоянно совершенствуются. На данном этапе при строгом соблюдении технологического процесса качество сварного шва нержавейки практически не уступает по своим свойствам металлу соединяемых деталей и гарантирует высочайшую надежность сварного соединения.

Посмотреть специальные предложения на продажу стали 12Х18Н10Т.