Азотирование стали 40х

Азотирование и карбонитрирование втулок и пластин из сталей 38Х2МЮА (1.8509) и 40Х (AISI 5135, 1.7034 ) крупными партиями в несколько тысяч штук

К различным деталям машиностроения типа «Втулка», «Палец», «Шайба дистанционная», «Прокладка», «Шайба полуоси», «Фиксатор тяги», «Пластина» предъявляются высокие параметры твердости и износостойкости. Для соответствия этим требованиям поверхность деталей упрочняют методами химико-термической обработки (ХТО). На сегодняшний день самой эффективной технологией поверхностного упрочнения сталей и сплавов является ионная ХТО: плазменное (ионно-вакуумное) азотирование и карбонитрирование.
Ионная ХТО приводит к комплексному улучшению характеристик рабочих поверхностей деталей: повышаются твердость, износо- задиростойкость, снижается коэффициент трения. Коррозионная стойкость поверхности низколегированных сталей после ионной ХТО сопоставима с нержавеющими. Сохраняются исходные требования к поверхностной чистоте и геометрическим размерам, не требуются шлифовальные операции и хонингование.
Преимущества ионного азотирования в сравнении с другими методами химико-термической обработки наиболее заметны при упрочнении деталей для массовой программы и крупносерийного производства. Ионно-плазменное азотирование и карбонитрирование – это ресурсосберегающие и экологически чистые технологии.
Низкий расход газов, отсутствие вредных выбросов, умеренный расход электроэнергии, все это делает ионную ХТО оптимальной технологией для поверхностного упрочнения деталей в промышленных масштабах. При этом, благодаря равномерному распределению температуры по всему объему садки, характеристики азотированного слоя одинаковы независимо от положения деталей в установке и общего объема садки.
Нашей фирмой проводятся работы по упрочнению машиностроительных деталей и другой продукции партиями в несколько тысяч штук. В частности, на постоянной основе упрочняем массовую продукцию для ООО «НПК «ИЗУРАН» (Пермь, http://npk-izuran.ru/), ООО «Ростсельмаш» (Ростов-на-Дону, https://rostselmash.com), ООО «Гинэль» (Пермь),
ООО «Камский арматурный завод» (Пермь, http://www.kaz59.ru).

Наиболее часто используемые марки сталей при производстве данных деталей – 38Х2МЮА, 40Х, 30ХГСА и др.

АЗОТИРОВАНИЕ СТАЛИ 38Х2МЮА (1.8509)

В процессе ионного азотирования на поверхности деталей, изготовленных из стали 38Х2МЮА (1.8509) сформировались диффузионный поверхностный слой и нитридная зона, для которых характерны высокая твердость, задиро- и износостойкость. Диффузионный слой характеризуется отсутствием хрупкой нитридной сетки и имеет мелкодисперсные нитридные включения в упрочненной матрице. Общая глубина слоя 0,36 — 0,4 мм., поверхностная твердость составляет 1010 — 1050 HV5 (кгс/мм 2 ).

Таблица 1. Характеристики азотированного слоя на стали 38Х2МЮА (1.8509)

Поверхностная твердость, HV5, кгс/мм 2 1010 — 1050
Поверхностная микротвердость, HV0.1, кгс/мм 2 1090 — 1145
Глубина азотированного слоя по микроструктуре, hм, мм. 0,36 — 0,37
Глубина азотированного слоя по микротвердости, hс, мм. 0,40
Толщина нитридной зоны hн.з., мкм. 12 — 15
Хрупкость по шкале ВИАМ 1 балл, не хрупкий

Рисунок 1. Микроструктура азотированного слоя на стали 38Х2МЮА (1.8509)

АЗОТИРОВАНИЕ СТАЛИ 40Х (AISI 5135, 1.7034)

На деталях, выполненных из стали 40Х (AISI 5135, 1.7034) также формируется диффузионный слой и нитридная зона. Поверхность приобретает повышенную твердость, высокую задиро- и износостойкость. Поверхностный слой не хрупкий. Глубина слоя по микроструктуре составляет 0,28 — 0,3 мм.

Таблица 2. Характеристики азотированного слоя на стали 40Х (AISI 5135, 1.7034)

Поверхностная твердость, HV5, кгс/мм 2 710 — 750
Поверхностная микротвердость, HV0.1, кгс/мм 2 750 — 810
Глубина азотированного слоя по микроструктуре, hм, мм. 0,28 — 0,30
Глубина азотированного слоя по микротвердости, hс, мм. 0,30
Толщина нитридной зоны hн.з., мкм. 6 — 9
Хрупкость по шкале ВИАМ 1 балл, не хрупкий

Рисунок 2. Микроструктура азотированного слоя на стали 40Х (AISI 5135, 1.7034)

АЗОТИРОВАНИЕ СТАЛИ 30ХГСА

На деталях, выполненных из стали з0ХГСА также формируется диффузионный слой и нитридная зона. Поверхность приобретает повышенную твердость, высокую задиро- и износостойкость. Поверхностный слой не хрупкий. Глубина слоя по микроструктуре составляет 0,35 — 0,4 мм.

Таблица 3. Характеристики азотированного слоя на стали 30ХГСА

Поверхностная твердость, HV5, кгс/мм 2 640 — 680
Поверхностная микротвердость, HV0.1, кгс/мм 2 840 — 910
Глубина азотированного слоя по микроструктуре, hм, мм. 0,35 — 0,36
Глубина азотированного слоя по микротвердости, hс, мм. 0,40
Толщина нитридной зоны hн.з., мкм. 9 — 12
Хрупкость по шкале ВИАМ 1 балл, не хрупкий

Рисунок 3. Микроструктура азотированного слоя на стали 40Х (AISI 5135, 1.7034)

Рисунок 4. Графики распределения микротвердости по глубине азотированного слоя

Рисунок 5. Отпечаток хрупкости на сталях, HV30, х100:
а – 40Х; б – 38Х2МЮА; в – 30ХГСА

В результате упрочнения деталей методом ионного азотирования получен диффузионный слой и высококачественная нитридная зона, которые обеспечивают повышение твердости в несколько раз, коррозионной стойкости и улучшение антифрикционных и триботехнических свойств деталей.
Технологические возможности процесса ионно-вакуумного азотирования позволяют создавать на металлах и сплавах поверхностные диффузионные слои различного химического состава, которые в сочетании со свойствами основного металла придают изделиям комплекс физико-механических свойств, определяющих их длительную эксплуатационную надежность. На сегодняшний день ионно-вакуумное азотирование является передовой технологией поверхностного упрочнения деталей, превышающей по своим техническим характеристикам другие типы покрытий, в том числе хромирование.
В настоящее время компанией ООО «Ионные технологии» ведутся более 10 НИОКР по внедрению технологий ионной химико-термической обработки с предприятиями различных отраслей промышленности.

Азотирование стали: описание и особенности процедуры

Азотирование стали представляет собой относительно новую технологию диффузного насыщения поверхностного слоя азотом. Её автором стал академик Н. П. Чижевский , который предложил применять уникальную методику для существенного улучшения рабочих свойств и параметров стальной продукции. До 20-х годов прошлого столетия способ не использовался в промышленном масштабе.

  • Принцип процесса
  • Механизм азотной обработки стали
  • Какие факторы влияют на азотирование
  • Разновидности обрабатываемой стали
    • Рекомендуемые марки
  • Этапы процедуры
  • Варианты сред для обработки
  • Преимущества технологии

Принцип процесса

Если сравнивать азотирование с традиционной цементацией, то первый вариант предлагает множество весомых преимуществ, нехарактерных для других технологий. По этой причине его до сих пор считают самым лучшим и эффективным способом обработки стальных конструкций с целью получения максимальных показателей прочности без применения дополнительной термообработки. Плюсом методики принято считать сохранение прежних размеров заготовки, что позволяет применять её уже к готовым изделиям, прошедшим термическую закалку с высоким отпуском и шлифование до окончательной формы. Успешное завершение азотирования позволяет проводить конечную полировку и другую обработку.

Процесс выполняется под воздействием аммиака, который нагревается до определенных температур. В результате материал поддаётся насыщению азотом и обретает массу уникальных свойств, включая:

  • улучшенную износостойкость металлических деталей, которая обеспечивается повышением индекса твердости их поверхностного слоя;
  • более высокую выносливость или усталостную прочность заготовки;
  • приобретение стойкой антикоррозийной защиты, которая остаётся прежней даже при воздействии с водой, воздухом и газовоздушной средой.

Прошедшие азотную обработку детали гораздо качественнее, чем аналогичные изделия, поддавшиеся цементации. Известно, что после второй процедуры слой сохраняет стабильную твердость лишь при условиях, что температурные показатели не превышают 225 градусов. В случае с азотом максимальный порог достигает 550−600 градусов. Это объясняется выработкой поверхностного слоя, который в несколько раз прочнее, чем традиционная закалка и цементация.

Механизм азотной обработки стали

Процедуру выполняют в нагретой до 500−600 градусов Цельсия герметично закрытой среде из железа, которую устанавливают в печь. Точные показатели температуры муфели (закрытой реторты) определяются режимом и ожидаемым результатом. То же самое касается времени процедуры. В контейнере размещаются элементы из стали, которые будут насыщаться азотом.

В процессе выполнения действия в реторту из баллона подаётся аммиак, который характеризуется способностью диссоциации (разложения) под воздействием определенной температуры. Механизм азотирования можно описать следующей формулой: 2 NH3 → 6H +2N.

В результате на поверхности железных изделий образуется слой нитридов, для которых характерна особая твердость. Как только процедура завершается, печь охлаждают вместе с потоком аммиака. Подобными действиями удаётся закрепить эффект по твердости слоя и предотвратить окисление поверхности.

Толщина нитридного слоя достигает 0,3−0,6 миллиметров. В итоге необходимость в термической обработке для улучшения показателей прочности банально пропадает. Формирование азотного слоя выполняется по сложной схеме, однако, путём продолжительных исследований металлурги изучили её максимально подробно. В сплаве возникают следующие фазы:

  • Твердый раствор Fe3N с долей азота 8,0−11,2%;
  • Твердый раствор Fe4N с долей азота 5,7−6,1%;
  • Раствор N в α-железе.
Читайте также  При какой температуре краснеет сталь

Если удаётся довести процесс до температуры 591 градусов Цельсия, это позволяет заметить ещё одну α-фазу. При достижении лимита насыщения возникает ещё одна фаза. Эвтектоидный распад производит 2,35% азота.

Какие факторы влияют на азотирование

Ключевое воздействие на процедуру оказывают следующие факторы:

  • температурный режим;
  • давление газа;
  • пролонгированность азотирования.

Конечный результат может определяться и степенью разложения активного вещества, которая варьируется в пределах 15−45%. К тому же важно учитывать одну особенность: чем выше температурные показатели, тем хуже прочностные показатели азотного слоя, но выше скорость диффузии. Твёрдость обусловлена коагуляцией нитридов.

Чтобы «выжать» из процедуры максимум положительных свойств и сократить время на обработку, некоторые металлурги практикуют двухэтапный режим работы. На начальном стадии стальную заготовку обогащают азотом под воздействием температуры 525 градусов. Этого вполне достаточно для обогащения верхних слоёв и повышения твёрдости.

Следующий этап подразумевает применение более высокого температурного режима от 600 до 620 градусов Цельсия. В данном случае глубина полученного слоя доходит до заданных значений, а весь процесс ускоряется практически в два раза. Тем не менее показатели твёрдости остаются аналогичными, как и при одноступенчатой обработке.

Разновидности обрабатываемой стали

Современная металлургия использует технологию азотирования для обработки углеродистых и легированных сталей, где доля углерода составляет 0,3−0,5%. Высокую успешность процедуры можно заметить при выборе легирующих металлов, способных создавать нитриды с высокими показателями термостойкости и твёрдости. Для примера, особая результативность процесса характерна при использовании тех конструкций, в составе которых сосредоточен алюминий, молибден, хром и другое подобное сырье. Подобные стальные заготовки принято называть нитраллоями.

Молибден способен предупреждать отпускную хрупкость, которая вызывается медленным остыванием стали после успешного завершения обработки. В итоге материал обретает следующие характеристики:

  • Твердость углеродистой стали — HV 200−250;
  • Легированной — HV 600−800;
  • Нитраллоев до HV 1200 и даже выше;

Рекомендуемые марки

Выбор конкретных марок стали определяется сферой эксплуатации элемента из металла. В основном металлурги выделяют следующие критерии:

  • Если вам необходимо получить детали с высокими показателями поверхностной твердости, выбирайте марку 38Х2МЮА. Она отличается высоким содержанием алюминия, который вызывает низкую деформационную стойкость изделия. Если в стали отсутствует алюминий, это негативно сказывается на твёрдости и износостойкости, хотя расширяет сферы применения и позволяет воспроизводить самые сложные конструкции и заготовки;
  • При станкостроении используются улучшаемые марки легированной стали 40Х, 40ХФА;
  • Если речь идёт об изготовлении деталей с высоким риском циклических нагрузок на изгиб, используйте продукцию под марками 30Х3М, 38ХГМ, 38ХНМФА, 38ХН3МА;
  • Что касается топливных агрегатов, где требуется применение сложнейших металлических изделий с высокой точностью изготовления, то есть смысл остановить свой выбор на модели 30Х3МФ1;

Этапы процедуры

Подготовительный этап, обработку азотом и финишное завершение поверхностного слоя стали и сплавов выполняют с помощью нескольких ступеней:

  • Подготовка метала путём термической обработки, в процессе которой выполняется закалка и высокий отпуск. Внутренность изделия обретает характерную вязкость и прочность. Закалку проводят под воздействием высоких температур, вплоть до 940 градусов. В дальнейшем материал поддают охлаждению в масле или воде. Отпуск выполняется при температурном режиме 600−700 градусов Цельсия, чего достаточно для обретения повышенной твёрдости;
  • Что касается механической обработки заготовок, то её завершают методом окончательной шлифовки материала. В конечном результате деталь обретает нужные размеры;
  • Важно обеспечить ряд предохранительных мер для тех элементов, которые должны насыщаться азотом. В процессе обработки применяют простые составы вроде жидкого стекла или олова, которые наносятся путём электролиза слоем не больше 0,015 миллиметров. Это позволяет сформировать тонкую пленку, непроницаемую для азота;
  • Следующий этап подразумевает азотирование по упомянутой выше технологии;
  • На финишном этапе детали доводят до ожидаемого состояния, а заготовки сложной формы с тонкими стенками упрочняют при температуре 520 градусов Цельсия.

Что касается изменения геометрических свойств заготовки после азотирования, то оно определяется толщиной полученного азотонасыщенного слоя и примененными температурами. В любом случае отклонения от ожидаемой формы незначительные.

Важно понимать, что современная технология обработки путём азотирования подразумевает использование печей шахтного типа. Максимальные температурные показатели достигают 700 градусов, поэтому циркуляция воздуха становится принудительной. Муфель бывает встроенным в печь или сменным.

При использовании дополнительного муфеля процесс обработки происходит гораздо быстрее. В итоге запасной муфель загружается сразу по готовности первого. Правда, такой способ не получил широкое распространение из-за высокой затратности.

Варианты сред для обработки

В настоящее время особо большим спросом пользуется азотная обработка стальных заготовок в аммиачно-пропановой среде. В таком случае у металлургов появляется возможность выдерживать сырье под воздействием 570 градусов на протяжении трёх часов. Образованный в таких условиях карбонитридный слой обладает минимальной толщиной, однако показатели прочности и износостойкости гораздо выше, нежели у тех вариантов, которые были изобретены по обычной методике. Твёрдость данного слоя находится в пределах 600−1100 HV.

Технология по-особому незаменима при выборе изделий из легированных сплавов или стали, к которым предъявляются высокие требования по эксплуатационной выносливости.

Также не менее популярным решением является применение технологии тлеющего разряда, когда материал упрочняют в азотсодержащей разряженной среде, подключая металлические изделия к катоду. В результате заготовка обретает отрицательно заряженный электрод, а у муфеля — положительно заряженный.

Технология позволяет сократить продолжительность действия в несколько раз. Между плюсом и минусом появляется разряд, а ионы газа воздействуют на поверхность катода, нагревая его. Такое воздействие осуществляется несколькими этапами:

  • изначально происходит катодное распыление;
  • затем очистка поверхности;
  • затем насыщение.

На первом этапе распыления выдерживают давление 0,2 миллиметра ртутного столба и напряжение 1400 вольт на протяжении 5−60 минут. В таком случае поверхность нагревается до 250 градусов Цельсия. Второй этап подразумевает использование давления 1−10 миллиметров ртутного столбика при напряжении 400−1100 В. Для процедуры требуется 1−24 часа.

Ещё одним очень эффективным методом обработки является тенифер-процесс, который подразумевает азотирование в жидкости на основе расплавленного цианиста под воздействием температуры 570 градусов Цельсия.

Преимущества технологии

В настоящее время технология азотирования считается самым популярным решением для достижения самых лучших эксплуатационных показателей металлических деталей. При правильном подходе обеспечивается наилучшее сопротивление изнашиванию, к тому же полученные в результате подобной обработки слои обретают высокую сопротивляемость коррозийному воздействию. Прошедшие обработку конструкции не нуждаются в дополнительной термической закалке. За счёт таких особенностей азотирование принято считать ключевым процессом обработки элементов в машиностроении, станкостроении и других сферах, где предъявляются высокие требования к составным частям.

Однако, кроме многочисленных плюсов, у технологии есть и минусы, которые заключаются в дороговизне и продолжительности процедуры. При температурном режиме 500 градусов Цельсия азот способен проникать на 0,01 миллиметров. В таком случае общая длительность процесса достигает одного часа.

Азотируемые марки стали. Эффективность и ключевые особенности технологии

Азотирование представляет собой процесс насыщения металлов азотом. При этом азотируемые марки стали подбираются с учетом требований технологии, что является крайне важным критерием для улучшения основных характеристик деталей. Азотирование часто применяется на отечественных предприятиях, которые занимаются изготовлением комплектующих для сборки автомобильных и промышленных агрегатов. Использование данной технологии позволяет повысить твердость, усталостную прочность и стойкость изделий.

Особенности технологии азотирования

Технология подразумевает собой насыщение структуры стали азотом. При этом отсутствует значительное термическое воздействие на деталь, что исключает возникновение любых деформаций. Методика азотирования отлично подходит для сталей, которые прошли предварительную закалку и механическую обработку с учетом требуемых геометрических размеров. Изначально стальные изделия помещаются в муфель. Герметичная емкость опускается в специальную печь, где происходит нагрев до 500-600 °C. При этом время выдержки зависит от конкретных требований. С целью формирования рабочей среды внутрь печи подается аммиак под давлением, который распадается на атомарный азот.

Читайте также  Технология сварки нержавеющей стали электродом

Существуют определенные азотируемые марки стали, которые допускают применение данной технологии обработки. При правильном подборе металлов на поверхности деталей образуются нитриды. Новый слой отличается крайне высокой твердостью. После проведения данных процедур обрабатываемые детали подвергают плавному охлаждению. Слой нитридов может иметь толщину около 0,3-0,6 мм. Данных параметров достаточно, чтобы готовая деталь смогла эксплуатироваться в наиболее жестких условиях. Стоит отметить, что азотирование является конечным этапом любой обработки металлов. После покрытия поверхности стали нитридами дополнительное упрочнение не потребуется.

Ключевые преимущества технологии:

  • высокая скорость обработки;
    • повышение твердости деталей;
    • отсутствие высокой температуры;
    • повышение устойчивости к износу;
    • увеличение стойкости к коррозии.

Большим преимуществом является то, что все детали после азотирования способны сохранять прочностные свойства при нагреве до 500-600 градусов. При обычной цементации стальные изделия теряют прочность уже на 200-220 °C. Поэтому данная методика является актуальной для целого ряда производств, которые занимаются металлообработкой.

Какие стали подлежат азотированию?

Все азотируемые стали всегда указываются в соответствующей документации. На практике подобной обработке могут подвергаться все разновидности легированных и углеродистых сталей. Последние имеют порядка 0,3-0,5 % углерода в основном составе. Однако наибольшей эффективности можно добиться тогда, когда в основу стали входят легированные добавки. К таким добавкам относятся алюминий, молибден и хром. Элементы способны повышать прочность слоя, который образуется после проведения процедуры азотирования.

Для азотирования применяются следующие стали:

  • 38Х2МЮА — материал характеризуется крайне высокой наружной прочностью. В структуре присутствует алюминий, который снижает устойчивость деталей к механическим воздействиям. Одновременно элемент повышает твердость и стойкость к коррозии по внешней оболочке. Сталь данного типа применяется для изготовления деталей сложной конфигурации;
  • 40Х, 40ХФА — вариант легированных сталей. Материал часто применяется для производства элементов станочного и инструментального оборудования;
  • 38ХН3МА (включая марки 30Х3М, 38ХНМФА и 38ХГМ) — сталь подходит для производства деталей, которые подвергаются высоким нагрузкам на изгиб;
  • 30Х3МФ1 — сталь применяется для производства целого ряда различных комплектующих и узлов, которые имеют точные и наиболее сложные геометрические параметры. Для дополнительной прочности в состав часто добавляется кремний.

режимы азотирования сталей

Качество азотирования зависит от давления газа, продолжительности выдержки, а также температуры, которая используется при обработке стальных деталей. Стоит отметить, что степень диссоциации аммиака напрямую влияет на эффективность процедуры.

Азотирование стали: особенности технологии и марки стали для азотирования

Содержание статьи:

Процесс азотирования стали предполагает насыщение поверхностного слоя металла азотом атомарного типа. Цель обработки – оптимизация характеристик прочности, твердости, износостойкости, устойчивости к коррозии без существенного воздействия температур и изменения параметров металлического изделия. Азотирование допускается к применению для уже закаленных, обработанных и отшлифованных заготовок. Обрабатывать поверхность можно и после ХТО. Ключевое достоинство технологии в сравнении с цементацией заключается в возможности оптимизации показателей твердости, которые остаются стабильными даже при температурном воздействии в пределах 450-500°C. Процесс осуществляется при повышенной температуре в среде обогащенной аммиаком.

Технологический процесс

Азотирование стали при помощи газовой технологии состоит из нескольких этапов:

  1. Предварительная термообработка (закаливание металла и высокий отпуск).
  2. Обрабатывание механическим способом.
  3. Обеспечение защиты в местах, которые не подвергаются упрочнению.
  4. Непосредственно, азотирование. Изделия размещаются в специальном герметичном муфеле, который, впоследствии устанавливается в печь, разогреваемую в пределах 500-600°C. В емкость подается аммиак, разлагающийся на атомарный азот и углеродные соединения под влиянием повышенной температуры. Азотные компоненты проникают в структуру стального сплава, образовывая нитриды, которые отличаются повышенной твердостью.
  5. Закрепляют результат и препятствуют окислению путем охлаждения заготовки, не вынимая ее из печи. Как следствие, образуется слой нитридов 0,3-0,6 мм. Дополнительное обрабатывание поверхности не предусматривается

При этом, процесс насыщения поверхностного слоя азотными соединениями можно ускорить за счет использования двухэтапной схемы:

  • изначальное азотирование осуществляется при 525°C;
  • в процессе температура постепенно повышается до 600°C.

Также существует современный аналог технологии, а именно азотирование ионно-плазменным способом. Процесс происходит в тлеющем разряде: изделие, подвергающееся обработке, подключается к катоду (электрод с отрицательным значением). В качестве анода используется муфель – емкость, в которой размещается деталь. Первая стадия предполагает очищение поверхности путем катодного распыления, а вторая – непосредственно насыщение слоя нитридами.

Марки стали для азотирования

Подобной разновидностью ХТО обрабатываются легированные и углеродистые стали, содержащие С в пределах от 0,3% до 0,5%. Особо высокую результативность обеспечивают легирующие компоненты, что способны образовать высокопрочные и устойчивые к термическому воздействию нитриды, к примеру, алюминий, молибден или же хром. Впрочем, повышающие твердость поверхностного слоя компоненты, нередко не позволяют наносить достаточно толстый слой азота на поверхность.

Для азотирования рекомендуется использовать такие марки низколегированной и легированной стали:

  • 38Х2МЮА, содержащую алюминий, который снижает стойкость заготовки к деформации и одновременно способствует повышению показателей твердости и устойчивости к износу после обработки;
  • 40Х и 40ХФА, представляющие собой сплавы низкого легирования, которые после обработки поверхности нитридами широко используются для производства станков и оборудования с нестандартными характеристиками;
  • 30Х3М, 38ХГМ и 38ХНМФА, которые используются при изготовлении деталей, функционирующих в условиях регулярных нагрузок на изгиб;
  • 30Х3МФ1, предназначенную для производства заготовок с повышенными требованиями к точности параметров (допускается обогащение сплава кремнием в целях создания конструктивных элементов топливной аппаратуры).

Методика, преимущества и этапы процесса азотирования стали

Азотирование стали — не столь давняя практика диффузного насыщения ее поверхностного слоя азотом. В промышленном масштабе такой способ применяется только с 20-х годов прошлого столетия. Данная процедура, предложенная академиком Н.П. Чижевским, значительно улучшает качество стальной продукции по многим параметрам.

Суть процесса азотирования

По сравнению с цементацией азотирование имеет несколько веских преимуществ, которое сделало его основным способом улучшения показателей стали. Азотированный слой обладает высоким показателем твердости без дополнительной термообработки. Кроме того, после азотирования размер обрабатываемой детали остается практически неизменным. В отличие от цементационного процесса, его можно применить к готовым изделиям, которые прошли термическую закалку с высоким отпуском и отшлифованы до окончательных форм. После азотирования детали полностью готовы к чистовой полировке и другой обработке.

Азотирование – это обработка стали в процессе ее нагрева в среде высокого содержания аммиака. Вследствие этого поверхность стали насыщается азотом и приобретает следующие качества:

  • Улучшается износостойкость деталей из металла за счет повышения индекса твердости их поверхностного слоя;
  • Растет выносливость или усталостной прочности стальных изделий;
  • Обработанный материал приобретает стойкую антикоррозионную защиту, которая сохраняется при контакте с водой, воздухом и паровоздушной средой.

Результаты азотирования намного ценнее в плане дальнейшей эксплуатации, нежели показатели изделия после цементации. Так, слой после цементации может сохранять стабильные показатели твердости при температуре не более 225 °С, а слой с азотом – до 550-600 °С. Причиной тому служит сам механизм азотирования, вследствие которого образуется поверхностный слой, который в 1,5-2 раза прочнее, чем после закалки и той же цементации.

Механизм азотирования

Обычно эта процедуры происходит при 500-600 °С в герметично закрытой реторте (муфели) из железа, которая внедряется в печь. Ее разогревают до температуры соответствующей выбранному режиму, и выдерживается необходимое время. В муфел, который являет собой контейнер, закладывают стальные элементы, которые будут подвержены азотированию.

В реторту из баллона непрерывно под определенным давлением запускается аммиак. Внутри нее аммиак, имеющий в своей молекуле азот, под действием температуры начинает диссоциацию (разложение) по следующей формуле:

Читайте также  Термическое оксидирование стали

2 NH 3 →6 H +2 N ,

откуда полученный в результате этого разложения атомарный азот проникает в металл путем диффузии. Это приводит к образованию нитридов на поверхности железных изделий. А нитриды и их твердые растворы характеризуются повышенной твердостью. По окончании процедуры печь должна плавно охлаждается вместе с потоком аммиака. Такой подход закрепляет эффект по твердости слоя, не давая поверхности окислиться.

Толщина такого нитридного слоя может варьировать от 0,3 до 0,6 мм. Таким образом, отпадает надобность в последующей термической обработке с целью повышения прочностных характеристик.

Схема формирования слоя, обогащенного азотом сложна, но хорошо изучена металлургами. В сплаве, который образуется вследствие диффузии азота в металл, наблюдается возникновение следующих фаз:

  • Твердый раствор Fe3N с долей азота 8,0-11,2%;
  • Твердый раствор Fe4N с долей азота 5,7-6,1%;
  • Раствор N в α-железе.

При доведении процесса до температуры, которая превышает 591 °С можно наблюдать дополнительную α- фазу. Когда она достигает лимита насыщения, это порождает следующую фазу. Эвтектоидный распад производит 2,35 % азота.

Факторы, влияющие на азотирование

Основными моментами, оказывающими ключевое влияние на процесс, являются температурный режим, давление газа и пролонгированность азотирования. Эффективность также зависит от степени диссоциации аммиака, которая может быть в районе 15-45%. Причем существует определенная зависимость: чем выше температура, тем ниже твердость слоя азотирования, но выше скорость диффузии. Показатель твердости вызван коагуляцией нитридов.

Для того чтобы использовать механизм по максимуму и ускорить его, прибегают к двухэтапному режиму. Начальная стадия обогащения азотом проходит при температурах до 525 °С, что обеспечивает верхним слоям стали высокую твердость. Затем азотирование проходит вторую ступень при температурном режиме от 600°С до 620 °С. При этом в очень короткое время глубина азотированного слоя доходит до заданных значений, ускоряя весь процесс почти в 2 раза. Однако, твердость образованного в результате ускорительного этапа слоя ничем не будет отличаться от слоя, который сформирован по стандартной одноступенчатой методике.

Какие стали азотируются

Для азотирования применяются как углеродистые стали, так и легированные, в которых доля углерода 0,3-0,5%. Наилучший результат можно получить при использовании стали с легирующими металлами, которые образуют наиболее термостойкие и твердые нитриды. Так, наиболее результативен процесс азотирования для легированных сталей, которые имеют в своем составе алюминий, молибден, хром и подобные металлы. Стали с таким составом называют нитраллоями. Молибден, в частности, предупреждает отпускную хрупкость, вызванную медленным остыванием стали после процесса насыщения азотом. Характеристики стали после азотирования:

  • Твердость углеродистой стали — HV 200-250 ;
  • Легированной — HV 600-800;
  • Нитраллоев до HV 1200 и даже выше.

Одновременно с тем, как твердость посредством легирующих составных становится выше, толщина азотированного слоя – ниже. Наиболее тонкий слой образуют стали с элементами хрома, вольфрама, никеля, молибдена.

Рекомендованные марки стали

Применение той или иной марки стали зависит от последующей эксплуатации металлического элемента. Рекомендованные марки для азотирования в зависимости от назначения изделий:

  • При необходимости получения деталей с высокой поверхностной твердостью – марка стали 38Х2МЮА. Стоит отметить, что в ней содержится алюминий, который приводит к низкой деформационной стойкости изделия. Тогда как применение марок, не содержащих алюминия, значительно снижает твердость поверхности и ее износостойкость, хотя дает возможность создания более сложных конструкций;
  • Для станкостроения применяют улучшаемые легированный стали марки 40Х, 40ХФА ;
  • Для деталей, подвергающихся циклическим нагрузками на изгиб – марка стали 30Х3М, 38ХГМ, 38ХНМФА, 38ХН3МА;
  • Для топливных агрегатов, детали которых должны быть изготовлены с высокой точностью – марка стали 30Х3МФ1 . Для получения более высокой твердости азотонасыщенного слоя, эту марку стали легируют кремнием.

Технология процесса

Подготовка, насыщение азотом и финишная обработка верхнего слоя стали и сплавов подразумевает несколько ступеней:

  1. Подготовительная термообработка металла, которая состоит из закалки и высокого отпуска. Внутренность изделия при этом становиться более вязкая и прочная. Закалка проходит при очень высокой температуре около 940 °С и заканчивается охлаждением в жидкости – масле или воде. Температурные условия отпуска составляют 600-700 °С , что наделяет металл твердостью годной для резки;
  2. Механическая обработка заготовок, которая заканчивается шлифовкой. После этой процедуры деталь достигает нужных размеров;
  3. Предохранительные меры для тех частей изделий, которые должны попасть под действие насыщения азотом. Для этого применяют простые составы вроде олова или жидкого стекла, наносимые слоем не более 0,015 мм путем электролиза. Происходит образованием тонкой пленки, непроницаемой для азота;
  4. Азотирование стали по вышеописанной технологии;
  5. Финишное доведение деталей до требуемого состояния.

При этом сложноформенные заготовки с тонкими стенками упрочняют при 520 °С.

По поводу изменения геометрических параметров изделий после процесса азотирования отмечено, что она зависит от толщины полученного азотонасыщенного слоя и примененных температур. Однако, данное изменение в любом случае незначительно.

Нужно отметить, что современные методы обработки металла способом азотирования проводят в печах шахтного строения. Максимальная температура которых может достигать 700 его проведения ˚С, циркуляция аммиака в таких печах принудительная. Муфель может быть встроенным в печь либо сменным.

Процесс будет проходить намного быстрее, если внедрить дополнительный муфель. Тогда запасной муфель с деталями загружается сразу же по готовности первого с обработанными заготовками. Однако, применение такого способа не всегда экономически оправдано, особенно при насыщении азотом крупных изделий.

Варианты сред для механизма азотирования

Аммиачно – пропановая среда

Последнее время весьма активно применяется метод обработки металла газом, состоящим на ½ из аммиака и на ½ пропана, или тех же пропорций аммиака и эндогаза. Такая среда дает возможность проводить процедуру в 3 часа при 570 ˚С. Карбонитридный слой, образуемый при этом, характеризуется небольшой толщиной. Но износостойкость и прочность у него намного выше, нежели у слоя, полученного по обычной методике. Твердость данного слоя находиться в границах 600-1100 HV . Применяется такой подход для изделий из легированных сплавов или стали, к которым выдвинуты особые требования по предельной эксплуатационной выносливости.

Тлеющий разряд

Также используется технология упрочнения в азотсодержащей разряженной среде. При этом применяют метод тлеющего разряда, подключая металлические детали к катоду. Заготовка в этом случае являет собой отрицательно заряженный электрод, а муфель – положительно заряженный.

Такая технология позволяет сократить длительность процесса в несколько раз. Между плюсом и минусом возбуждается разряд, ионы газа (N2 или NH3) вовлекаются на поверхность катода, нагревая его до необходимой температуры. Это происходит поэтапно: вначале катодное распыление, поверхность очищается, а затем насыщают.

Первый этап распыления должен проходить при давлении 0,2 мм ртутного столба и напряжении 1400 В в течение 5-60 минут. При этом поверхность греется до 250 ˚С. Второй этап проводится в условиях давления 1-10 мм ртутного столбика и напряжении 400-1100 В, что занимает время 1-24 часа.

Жидкая среда

Весьма эффективным является тенифер-процесс – азотирование в жидкости, который проходит в расплавленном цианистом слое при 570 ˚С в течение 30-180 минут.

Азотирование — выводы

Азотирование один из наиболее популярных способов доведения металлических деталей до наилучших показателей сопротивления изнашиванию. Кроме того, полученные в результате насыщения азотом поверхностные слои имеют высокую сопротивляемость коррозии. Изделия, прошедшие насыщение азотом, не требуют дополнительной термической закалки. В результате чего, азотирование стало ключевым процессом обработки деталей в машиностроении, станкостроение и в других сферах, выдвигающих высокие требования к составным элементам.

У азотирования существуют и свои недостатки, состоящие в дороговизне и длительности его проведения. Так, при температурах в 500°С азот проникает на 0,01 мм (или менее) за каждый час. Исходя из этого факта, общее время всего процесса порой доходит до 60 часов.