Полунагартованный металл это

5 способов нагартовки (пластической деформации металлов)

Услышав слово «нагартовка», большинство пожмёт плечами. Бывшие студенты металлургических и машиностроительных учебных заведений наморщат лоб, пытаясь что-то вспомнить. Лишь единицы смогут объяснить суть явления. Расскажем об этом сложном термине, пришедшем к нам из материаловедения металлов.

Нагартовка или наклёп?

Часто нагартовку путают с наклёпом. Наклёп — более широкое понятие. Это все виды пластической деформации металлов, возникающие при наружном механическом воздействии. Наклёп может быть полезным и вредным. Полезный наклёп создаётся специально и называется «нагартовка» (от немецкого слова hart — твёрдый). Вредный наклёп образуется не специально и требует последующей термической обработки металла.

Что такое пластическая деформация?

Деформация — это изменение формы и размеров предмета. Она бывает упругой и неупругой. При упругой деформации размеры тела не меняются или восстанавливаются, при неупругой меняются. Неупругая деформация возникает, например, в алюминиевой заклёпке при ударах по ней металлическим молотком для формирования второй шляпки. Под ударом молотка алюминий на мгновение становится пластичным в месте удара и меняет свою форму. Поэтому неупругую деформацию металлов ещё называют пластической.

Что происходит внутри металла при пластической деформации?

Любой металл имеет кристаллическую пространственную решётку, в узлах которой находятся атомы. Чистые металлы без примесей имеют правильную прямоугольную решётку, в которой расстояния между атомами равны. Освободить металл от примесей при плавке сложно и на 100% невозможно. После плавки металл начинает остывать. Внутри него происходят сложные физико-химические процессы и формируется монолитный кристалл.

Примеси в виде атомов чужих металлов и неметаллов вклиниваются в структуру кристалла и мешают его правильному росту. Вот поэтому в любом металле после расплава при остывании образуются зёрна разной величины и формы. Внутри каждого зерна находится чистый металл с правильной решёткой. Примеси располагаются на границах зёрен. Связи между атомами металла в кристалле очень сильны. Но при пластичной деформации строгая прямоугольная решётка кристалла меняет свою форму, она сминается.

Пример из жизни

Если взять кусочек пластилина и немного покатать его между ладоней, можно получить некое подобие металлического зерна. Ударив несильно ладонью по окатышу, получим овальный блинчик. Приблизительно такую форму принимают зёрна металла после пластической деформации. Но не все зёрна становятся «блинчиками». Пластическая деформация сминает зёрна только в верхних слоях металла, упрочняя его.

Почему упрочняются верхние слои?

Для наглядности нужно опять обратиться к пластилину. Сделаем много окатышей и положим их ненадолго в морозилку. Из несильно замороженных кусочков слепим кучу. Ударим ладонью по этой куче. Что произошло? В месте удара образовались знакомые нам «блинчики». В глубине кучи окатыши тоже немного помялись. Чем глубже, тем меньше было сминания.

А теперь попробуем отрывать окатыши пластилина от кучи. С обратной от удара стороны это получается легко. Но чем ближе к месту удара, тем тяжелее это делать. Почему? Зёрна в глубине металла имеют определённую площадь соприкосновения друг с другом. В месте удара площадь соприкосновения увеличивается из-за увеличения внешней поверхности смятого зерна. При увеличении площади соприкосновения «родные» атомы металла соседних зёрен образуют между собой дополнительные связи. «Блинчики» крепче связаны между собой, чем простые «окатыши». Вот и весь секрет уплотнения и упрочнения верхних слоёв металла после пластической деформации!

Виды нагартовки металла

Нагартовка — это полезный процесс, при котором уплотняются верхние слои металла. Такой уровень упрочнения не приводит к появлению трещин и разрушению верхних слоёв. Снаружи металла появляется «корка», которая защищает деталь при эксплуатации. После нагартовки не нужна последующая механическая обработка металла.

В отличие от нагартовки вредный наклёп требует снятия возникших в верхних слоях напряжений. Металлу устраивают «баню», нагревая поверхность до величины в 40–60% от температуры плавления. При остывании происходит рекристаллизация, восстанавливается обычная структура зёрен, напряжений больше нет и можно проводить дальнейшую механическую обработку деталей, не ломая инструмент.

Полезный наклёп (нагартовка) и вредный наклёп возникают в результате пластической деформации верхних слоёв металла только в результате холодной обработки давлением. «Холодный» – подразумевает температуру окружающего воздуха. Справочники говорят нам о допустимой верхней температуре — не больше температуры «рекристаллизации».

Важной особенностью пластической деформации является отсутствие разрушения. Пластичность оценивается величиной относительного удлинения стандартного образца при разрыве. Эта величина составляет 10–50%. К сплавам, обладающим высокой пластичностью, относятся низкоуглеродистые стали (содержание углерода 0,25%), сплавы алюминия, меди (латуни), многие легированные стали.

Какими же бывают виды холодной обработки металла давлением, запускающие процесс нагартовки в металле?

Их всего пять:

  1. Ковка.
  2. Прокатка.
  3. Прессование или штамповка.
  4. Волочение.
  5. Редуцирование.

Холодная ковка

Оборудованием служат пневматические молоты при весе заготовок от 0,3 до 20 кг, паровоздушные молоты для заготовок 20–350 кг, гидравлические прессы для обработки деталей весом до 200 тонн.

Холодную ковку включают в технологию обработки, если нужно:

  • расплющить деталь — уменьшить высоту, увеличив поперечное сечение (осадка);
  • увеличить длину поковки за счёт уменьшения поперечного сечения (протяжка);
  • получить глухое или сквозное отверстие (прошивка);
  • изогнуть ось заготовки, при этом радиус изгиба не должен вызывать складки на внутренней и трещины на внешней стороне изделия (гибка);
  • увеличить ширину заготовки за счёт уменьшения её толщины (разгонка).

Холодная прокатка

Это самый распространённый способ нагартовки. Так получают длинные заготовки — трубы, рельсы, профили строительных конструкций. Прокаткой получают листовой металл, используемый в машиностроении. Примером холодной прокатки может служить алюминиевая фольга толщиной до 0,001 мм, получаемая из чистого алюминия.

Холодное прессование или штамповка

Есть два вида — объёмная и листовая штамповка.

При объёмной штамповке можно делать:

  • выдавливание заготовки;
  • высадку;
  • формовку.

Выдавливание производят на прессах в штампах, имеющих пуансон и матрицу. Исходной заготовкой служит пруток или лист. Если делают прямое выдавливание, то получают болты и клапаны. Обратным выдавливанием изготавливают полые детали. При боковом выдавливании производят различные тройники и крестовины. В сложном изделии, выдавливание делают комбинированным.

Только этот вид штамповки позволяет получить максимальную деформацию поверхности без её разрушения.

Холодная высадка — самый высокопроизводительный способ изготовления продукции. Процесс поддаётся автоматизации, поэтому в минуту можно получить от 20 до 400 деталей. Исходным материалом здесь служит пруток или проволока диаметром 0,5–40 мм. В высадке есть потребность при выработке деталей с местным утолщением: заклёпок, болтов и винтов, гвоздей, шариков, звёздочек и накидных гаек. Коэффициент использования металла достигает 95%.

Процесс холодной формовки аналогичен горячей штамповке. Однако здесь нужны более высокие усилия, потому что материал имеет низкую формуемость из-за упрочнения и действия сил трения. Обычно так получают детали из цветных металлов.

При холодной листовой штамповке заготовками служат листы, полосы или ленты толщиной не более 10 мм.

У листовой штамповки есть много преимуществ:

  • получение деталей с малой массой;
  • высокая точность и качество поверхностей;
  • производительность — до 40 тысяч деталей в смену на одном станке;
  • возможность автоматизации процесса.

При листовой штамповке деформации можно подвергать всю заготовку (отрезка и вырубка) или её часть (гибка, вытяжка и формовка).

Холодное волочение

Если нужно уменьшить диаметр и уплотнить поверхность проволоки для повышения её прочностных характеристик, применяют волочение. Это единственный способ нагартовки больших объёмов проволоки. В отличие от прокатки, где инструментом служат вращающиеся валки, в волочении для обжатия используют неподвижную матрицу с фильерами. За один цикл нельзя значительно сократить диаметр изделия, потому что тянущее усилие приложено к его тонкому концу.

Читайте также  Клей для стекла и металла прозрачный

Волочильные станы позволяют получать проволоку диаметром от 1 микрона до 6 мм.

Редуцирование

При этом способе нагартовки заготовка помещается между вращающимися обжимными валами или вращающаяся заготовка формуется под действием пуансона. В процессе вращения и обжима происходит изменение формы поверхности детали и её уплотнение.

  • накатка наружной и внутренней резьбы;
  • редуцирование труб;
  • правка заготовок;
  • гибка заготовок.

На резьбонакатных станках получают заготовки с наружной и внутренней резьбой М3 — М68, используя для этого накатные ролики или оправки. При редуцировании труб происходит в основном закатка или раскатка концов на длину до 200 мм. Правка заготовок нужна для выправления геометрической оси изделия. Гибку заготовок используют для получения пружин разного диаметра.

Как оказалось, нагартовка очень интересный, полезный и распространённый способ деформации металлов, который позволяет значительно увеличить эффективность металлообработки.

Нагартовка и наклеп – принципиальна ли разница?

Безусловно, упрочнение металлов весьма важно, ведь большинство узлов машин и механизмов работают в неблагоприятных условиях, способствующих возникновению разных дефектов, и одним из способов добиться износоустойчивости является нагартовка стали.

1 Явление наклепа и нагартовки – зачем оно нужно?

Наклеп является одним из видов упрочнения металлов и их сплавов путем пластической деформации, проходящей при температуре, которая ниже температуры рекристаллизации. Осуществляется этот процесс через изменение структуры материала и фазового состава. Явление наклепа сопровождается дефектами кристаллической решетки, выходящими на поверхность образца. В результате увеличиваются твердость и прочность, но при этом снижаются такие характеристики, как ударная вязкость, пластичность и сопротивляемость материала деформации противоположного знака, также снижается и его устойчивость к коррозии.

У ферромагнитных же металлов, например у железа, возрастает коэрцитивная сила, а магнитная проницаемость, напротив, становится меньше. Остаточная индукция при небольших степенях деформации падает, но если этот параметр увеличить, то она резко возрастет. Кроме того, более пластичные материалы создают большее трение, наклеп деформируемого металла упрочняет его и, соответственно, данный показатель становится ниже.

Что же насчет нагартовки, так она, по сути, является тем же наклепом. Просто последний может быть полезным либо вредным (неумышленным). Например, в результате резанья происходит интенсивный наклеп, металл упрочняется и становится более хрупким, хотя мы не хотели такого результата. В общем, все произошло само собой, без нашего желания и потребности. А вот нагартовка – это осознанное упрочнение, когда хотят добиться такого эффекта.

2 Наклеп металла – типы и физика этого процесса

Данное упрочнение бывает двух видов. В случае если в металле произошли фазовые изменения, в результате чего образовались новые фазы, имеющие иной удельный объем, то такой процесс будет, соответственно, называться фазовым наклепом. А когда изменения кристаллической решетки произошли в результате воздействия каких-то внешних сил, то это будет деформационный. Он, в свою очередь, делится на центробежно-шариковый и дробометный наклеп.

Так, при первом на обрабатываемую поверхность воздействуют шарики, которые располагаются на периферии обода и затем отбрасываются вглубь гнезда. Дробеструйное (дробометное) упрочнение достигается посредством кинетической энергии быстрого потока (его скорость достигает 70 м/с) круглой дроби диаметром в пределах от 0,4 до 2 миллиметров. Часто для этой цели используют чугунные, керамические, стальные элементы.

Разберемся в физике этого процесса. Если на металл производить некую нагрузку, которая будет превышать предел текучести, то при этом возникнут напряжения, а после снятия давления материал будет деформирован. В случае же повторного «нагружения» способность данного изделия к пластическим деформациям снизится, и его предел текучести повысится до значения возникших ранее напряжений. Материал, очевидно, станет прочнее. И тогда чтобы опять вызвать очередное изменение формы с остаточным изгибом, необходимо будет прикладывать более высокую нагрузку.

Вообще, пластическая деформация является следствием перемещения дислокаций. И пара движущихся дефектных линий в кристаллической решетке способна породить сотни новых, результатом этого является повышение предела текучести. Но такое явление значительно отражается на строении металла. Его решетка искажается, а беспорядочно ориентированные кристаллы поворачиваются осями наибольшей прочности вдоль направления деформации. И чем последняя окажется больше, тем заметнее будет увеличиваться степень структурированности, другими словами, все зерна станут ориентированы одинаково. При этом мнение, будто зерна измельчаются, весьма ошибочно, они только лишь деформируются, сплющиваются, но сохраняют площадь поперечного сечения.

Таким образом, наклеп металла представляет собой физический процесс, в результате которого изменяется кристаллическая структура материала, и металл становится более прочным, твердым, но в то же время и хрупким.

3 Нагартовка – оборудование и технологический процесс

Данный способ упрочнения нашел свое применение в том случае, когда необходимо повысить устойчивость деталей к растрескиванию, а также предотвратить усталость материала. Он часто используется в таких областях, как автомобиле- и авиастроение, в нефтяной и строительной индустриях. Немаловажным в этом вопросе является и качество оборудования, с помощью которого производят наклеп металла. Сегодня выбор установок довольно велик, причем они могут быть как общего назначения, так и созданные для какого-то конкретного ассортимента, например болтов, пружин и т. д. При этом независимо от размеров и вида обработки, процесс полностью автоматизирован, каждая установка позволяет регулировать как количество дроби, так и скорость, с которой она подается.

Как говорилось выше, данное явление может быть желаемым и наоборот. Желательное (полезное) – его называют нагартовкой – в основном применяют, когда нет возможности упрочнить металл путем термической обработки, также тогда находят свое применение операции, осуществляемые путем холодного деформирования. Это накатка, волочение, холодная прокатка, дробеструйная обработка и т. д. В основном нагартовке подвергаются медь, некоторые алюминиевые сплавы и сталь с содержанием углерода менее 0,25 %.

Что же насчет вредного наклепа, так здесь тоже все понятно, он возникает как бы сам собой и является нежелательным результатом какого-либо механического воздействия. Таким образом, проводить дальнейшую обработку металла зачастую становится невозможно, потому что можно повредить как инструмент, так и само изделие. Еще одним поводом для нежелательного упрочнения может служить нагрузка, повторявшаяся несколько раз, и в каждом случае было превышение предела текучести материала. Вследствие чего металл может быть подвержен полному разрушению.

В случае, когда необходимо вернуть образцу первоначальные свойства, производят снятие наклепа. Осуществляется данная процедура путем нагревания металла, так как тогда движение атомов становится более интенсивным, что способствует протеканию процессов, которые возвращают его в более устойчивое состояние. При этом следует иметь в виду, если нагрев относительно невысокий, тогда происходит возврат (снятие микронапряжений второго рода и частичного искажения кристаллической решетки).

Но если температуру и дальше увеличивать, тогда атомы становятся все более и более подвижными, в результате чего появляются новые равноосные зерна. Данное явление носит название рекристаллизационный отжиг. Этот процесс является по своей сути диффузионным, первыми возникают зародыши новых зерен в местах, где плотность дислокаций повышена и сосредоточены наибольшие искажения кристаллической решетки. Далее же происходит рост очагов в результате перехода атомов от проблемных участков. В конце концов деформированные зерна исчезают полностью, а металл состоит из новых, равноосных. Так становится видно, что наклеп и рекристаллизация являются противоположными процессами.

Когда «наклеп», а когда «нагартовка»?

Сущность наклепа металла

Металлы и их сплавы имеют кристаллическую структуру и состоят из большого количества зерен. Эти зерна имеют неправильную форму и различные размеры. В каждом зерне атомы упорядочены, но смежные зерна по-разному ориентированы относительно друг друга. В процессе холодной деформации структура зерен меняется за счет их фрагментации зерен, движения атомов и искажения атомной решетки. Подробнее об этом см. Физическая сущность наклепа.

Читайте также  Какие металлы магнитятся

Когда материал подвергается механическому нагружению, в его кристаллической структуре образуются микроскопические дефекты, которые известны как дислокации. Если нагрузки продолжают увеличиваться, эти дислокации начинают продвигаться и взаимодействовать между собой. Таким образом они образуют новую внутреннюю структуру, которая сопротивляется дальнейшей пластической деформации. Эта структура повышает предел текучести материала, то есть его способность сопротивляться прилагаемым усилиям. При этом пластические свойства материала снижаются. Одним из наиболее известных путей намеренного создания наклепа является холодная формовка деталей и изделий.

Уменьшение плотности металла при наклепе

При наклепе металла его плотность уменьшается. Это происходит потому, что пластическая деформация приводит к нарушению порядка в размещении атомов, увеличение плотности дефектов и образование микропор. Уменьшение плотности означает увеличение удельного объема – объема единицы массы.

Остаточные напряжения при наклепе

Наружный наклёпанный слой стремится расшириться, а внутренние слои его «не пускают» — в нем возникают сжимающие остаточные напряжения. Эти напряжения бывают очень полезными, так как способны замедлять зарождение и рост поверхностных усталостных трещин.

Полезный наклеп

Наклеп может быть желательным и нежелательным, полезным и вредным. Если наклеп металла является полезным, то при его изготовлении стремятся применять операции холодного пластического деформирования: холодную прокатку, волочение, обработку дробью, галтовку, накатку и тому подобное. Это особенно важно для металлов и сплавов, которые не способны упрочнятся термически. К этим материалам относятся низкоуглеродистые стали, некоторые алюминиевые сплавы, а также чистая медь. Когда эти материалы подвергаются сжатию, волочению, гибке или ковке, то напряжения, которые при этом возникают, приводят к возникновению в кристаллической структуре дислокаций, которые упрочняют металл. В этом случае применяют оба термина: и наклеп, и нагартовка.

Стандарты о наклепе и нагартовке

Отечественные, еще советские, стандарты – ГОСТы — применяют к полезно «наклепанным» металлическим изделиям, например, листам алюминиевых сплавов только термин «нагартованные» и совершенно не употребляют слова «наклеп» или «наклепанные». Можно видеть это, например, в ГОСТ 21631 на листы из алюминия и алюминиевых сплавов: «листы нагартованные», «листы полунагартованные».

Вредный наклеп

Нежелательный, вредный наклеп возникает, например, когда пластичные и мягкие металлы и сплавы подвергаются механической обработке резанием. Чрезмерно глубокие резы за один проход приводят с большой скоростью могут приводить к возникновению интенсивного наклепа с нежелательным увеличением прочности металла и его охрупчиванию. Это препятствует дальнейшей механической обработке детали, а может привести и к повреждению режущих инструментов. Другим примером вредного наклепа может служить повторяющееся нагружение детали с превышением предела текучести материала. При таком нагружении материал в критических сечениях может быстро наклепываться, терять свою пластичность и разрушаться. В подобных случаях явление деформационного упрочнения называют наклепом, но никогда не называют нагартовкой.

Когда «наклеп», а когда «нагартовка»?

Учитывая выше изложенное, делаем два «смелых», но естественных вывода.

Наклепом называется любое проявление деформационного упрочнения кристаллических материалов – полезное и вредное, умышленное и неумышленное.

Нагартовкойназывается только полезное деформационное упрочнение изделий, которое умышленно применяют к изделиям с целью повышения их прочностных свойств. Иногда, может быть, и не умышленно, но всегда осознанно.

Прокатка полунагартованных и нагартованных полос на стане 1700

Прокатка полунагартованных (пн) и нагартованных (н) полос для транспортерных лент производится на первых промежуточных валках с разностью диаметров оснований конических выпусков 0,74 мм и рабочих валках с суммарной выпуклостью от 0,00 до 0,10 мм.

В начале прокатке первые промежуточные валки должны быть установлены симметрично относительно продольной оси стана; изгиб опорных валков В и С отсутствует.

Режимы прокатки приведены в технологической карте.

В первом пропуске производится перемотка полосы с разматывателя на правую моталку, для чего рабочие валки вываливаются после задачи конца полосы в правую моталку, затем (после перемотки полосы) заваливаются для прокатки в последующих пропусках.

Перемотка производится с использованием системы центрирования полосы «Аскания» и пресс — проводок.

В начале перемоточного (первого) пропуска полоса останавливается и тщательно осматривается сверху и снизу; в случае обнаружения дефектов немедленно принимаются меры к устранению их источника.

С целью получения удовлетворительных механических свойств прокатку полунагартованных и нагартованных полос рекомендуется производить строго на номинальную толщину.

В начале первого и последнего пропуска при прокатке каждой полосы вальцовщиком контролируется качество поверхности, толщины и плоскостности полосы при снятом натяжении. Равномерность вытяжки по ширине обеспечивается изменением выпуклости рабочих валков, осевым перемещением нижних первых промежуточных валков, а также путем регулирования положения подвижных опор валков В и С.

Волнистость кромок не допускается.

Удаление смазки с поверхности полосы в последнем проходе производится войлочными вытирателями, которые заменяются новыми после прокатки четырех полос.

В паспорте и маркировке полос дополнительно указывается состояние металл «пн» или «н».

Прокатка нагартованных полос – заготовок.

Прокатка нагартованных полос – заготовок производится разовыми партиями в объеме заказа (не более сменного задания) не позднее чем через двое суток после перевалки опорных валков. Состояние (степень износа) опорных подшипников должно обеспечивать прокатку полос требуемых профиля и формы.

Полосы прокатываются на рабочих валках диаметром не менее 130 мм, профилируемых с выпуклостью 0,10 мм каждый.

В начале прокатки первые промежуточные валки должны быть установлены симметрично относительно продольной оси стана, изгиб опорных валков В и С отсутствует.

Режимы прокатки полос – заготовок различного сортамента для приведены в технологической карте.

Непосредственно перед прокаткой полос, предназначенных для производства шлифованного и полированного листа, производится уточнение настройки валковой системы стана путем прокатки настроечного рулона стали марки 12Х18Н10Т на толщину 1.5 мм по режиму обжатий технологической карты.

При прокатке настроечного рулона проверяется отсутствие на полосе дефектов по вине 20-валкового стана, контролируется профиль полосы и обеспечивается равномерность вытяжки по ширине осевым перемещением первых промежуточных валков, а также путем регулирования положения подвижных опор валков В и С.

Прокатанный настроечный рулон назначается на термообработку в соответствии с заданием ПРБ.

В первых двух или трех пропусках (соответственно при прокатке полос на толщину 2,0 и 1,5 мм) оператор главного поста обязан с помощью нажимного устройства максимально уменьшить продольную разнотолщинность полосы (обжать утолщенные концы до заданной согласно режимам прокатки толщины).

Плоскостность полосы во всех пропусках контролируется при снятом натяжении. Прокатываемая полоса не должна иметь односторонней волнистости, допускается незначительная симметричная волнистость кромок.

Перед последним пропуском вальцовщик тщательно контролирует состояние верхней и нижней поверхности полосы. При обнаружении дефектов по вине 20-валкового стана производится перевалка рабочих валков, либо принимаются другие меры по устранению причин возникновения дефектов.

Перед последним пропуском на полосу устанавливаются войлочные вытиратели; в начале последнего пропуска (после прокатки 4 – 5 м полосы) осуществляется контроль толщины и плоскостности.

Толщина контролируется ручным микрометром и должна находиться в середине плюсового допуска, соответствующего точности прокатки Б по ГОСТ 19904-90.

Плоскостность контролируется на горизонтальном участке петли, образованной со стороны наматывающей моталки, путем прикладывания метровой линейки к полосе поперек направления прокатки.

В поперечном направлении полоса должна иметь плавную, без местных перегибов, симметричную коробоватость. Расстояние от линейки до полосы по оси прокатки, определяемое визуально, не должно превышать 8 мм для полос из сталей марок 12Х18Н10Т и 17Х18Н9 и 6 мм для полос из стали марки Ди13. «Зависание» кромок полосы не допускается.

Читайте также  Отбортовка кромок листового металла

По результатам проверки плоскостности при необходимости вальцовщик вносит поправки (изменение величины обжатия, перемещение подвижных опор валков В и С, изменение натяжения), после чего прокатка данной полосы производится без остановок. Работа нажимным механизмом и изменение величины принятых натяжений после внесения поправок запрещаются.

При установившейся прокатке полос одного типоразмера допускается контролировать плоскостность при снятом натяжении без образования петли.

В паспорте плавки на годные полосы делается отметка: «Годен».

Если по каким-либо причинам полоса признана негодной, в паспорте и графике – задании ПРБ вальцовщик делает отметку «не годен» и рулон назначается на термообработку.

Алюминиевые листы

Наличие алюминиевых листов и плит на складе ООО «Галактика», Подольск:

Листы подразделяют:

a) по способу изготовления:

неплакированные из сплавов марок Д12, УМн, АМцС, АМг2, АМг3, АМг5, АМг6, АВ и алюминия марок А7, А6, А5, А0, АД0, АД1 обозначают маркой сплава без дополнительных знаков
плакированные из сплавов марок АМг6 и Д16 с технологическим плакированием — Б АМг6Б, Д16Б
плакированные из сплавов марок Д1, Д6, В95 с нормальным плакированием — А Д1А, Д16А, В95А
плакированные из сплавов марок АМг6 и Д16 с утолщенным плакированием — У АМг6У, Д16У

б) по состоянию материала:

без термической обработки дополнительное обозначение не присваивается
Примечание. Листы, изготовляемые без термической обработки, кроме сплава ВД1, могут быть подвергкуты отжигу.
отожженные М Д16БМ, Д16АМ, Д16УМ и В95АМ.
Примечание. Отожженные листы из алюминия и алюминиевых сплавов можно поставлять без термической обработки, если они удовлетворяют требованиям, предъявляемым к отожженным листам по механическим свойствам, качеству поверхности и неплосткостности. Такие листы маркируют бквой М в скобках (М).
полунагартованные Н2
нагартованные Н А7Н. А6Н, А5Н, А0Н, АД0Н, АД1Н. АМцН, АМцСН и АМг2Н:
закаленные и естественно состаренные Т АВТ, Д1АТ, Д16БТ,Д16АТ и Д16УТ
закаленные и искусственно состаренные Т1 ABТ1 и B95AT1
нагартованные после закалки и естественного старения ТН Д16БТН, Д16АТН

в) по качеству отделки поверхности на группы:

высокой отделки — В А7, А6, А5, А0, АД0, АД1, АМц, АМг2
повышенной отделки — П А7, А6, А5, А0, АД0, АД1, АМц, АМцС, Д12, АМг2, АМг3, АМг5, АМг6, АМг6Б, АМг6У, АВ, Д1А, Д16Б, Д16А, Д16У, В95А
обычной отделки — без дополнительного обозначения А7, А6, А5, АО, АД0, АД1, АМц, АМцС, Д12, АМг2, АМг3, АМг5, АМг, АМг6Б, АМг6У, АВ, Д1А, Д16Б, Д16А, Д16У и В95А
Примечание. Листы высокой группы отделки изготовляют толщиной до 4,0 мм;

г) по точности изготовления по толщине:

  • повышенной точности по толщине, ширине, длине или по одному из указанных параметров — П;
  • нормальной точности по толщине, ширине, длине — без дополнительного обозначения.

Листы поставляют мерной или кратной мерной длины в пределах длин, установленных по табл. 106, с интервалом 500 мм.

В случае отсутствия в наряде-заказе указания о точности изготовления и группе отделки листы из алюминия и алюминиевых сплавов изготовляют нормальной точности и обычной отделки.

Примеры обозначений:

  • лист из сплава марки АД1, без термической обработки, обычной отделки поверхности, нормальной точности изготовления, толщиной 5 мм, шириной 1000 мм, длиной 2000 мм:

Лист АД1-5 x 1000 х 2000 ГОСТ 21631-76

  • то же, отожженный, толщиной 5 мм, шириной 1000 мм, длиной 2000 мм:

Лист АД1.М-5 х 1000 х 2000 ГОСТ 21631— 76

  • то же, полунагартованный, повышенной отделки поверхности, нормальной точности изготовления:

Лист AД1.H2-П-5 х 1000 х 2000 ГОСТ 21631-76

  • то же, нагартованный, повышенной отделки поверхности, повышенной точности изготовления:

Лист АД1Н-П-5 х 1000 х 2000 ГОСТ 21631-76

106. Размеры листов, мм, в зависимости от марки сплава, плакирования и состояния материала

Марка алюминия, алюминиевого сплава и плакирование Толщина листа Ширина листа Длина листа
Без термической обработки
А7, А6, А5, А0 От 5,0 до 10,5 600, 800, 900 2000
АД0, АД1 600, 800, 900
Ад0, Ад1, АМц, АМцС, АМг2, АМг3, АМг5, АМг6, АМг6Б, АВ, АД1,Д16А 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
В95А 1000, 1200, 1425, 1500, 2000
1915 От 5,0 до 10,5 1200, 1500, 2000 2000-7000
Отожженные
А7, А6, А5, А0, АД0, АД1, АД00, АД От 0,3 до 10,5 600, 800, 900, 1000 2000
А7, А6, А5, А0, АД0, АД1, АД00, АД, АД0, АД, АМц, АМцС, АВ, АМг2 От 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-4000
Св. 0,7 до 10,5 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
АМг3, АМг5, АМг6, АМг6Б От 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-7000
Св. 0,7 до 10,5 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
АМг6У Св. 2,0 до 5,5 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
Д12 От 0,5 до 4,0 1200, 1500 3000-4000
Д1А, Д16Б, Д16А от 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-4000
Св. 0,7 до 4,0 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
Св. 4,0 до 10,5
Д16У от 0,5 до 0,7 1200, 1500 2000-4000
Св. 0,7 до 4,0 2000-7000
В95А от 0,5 до 0,7 1000, 1200, 1425, 1500 2000-4000
Св. 0,7 до 4,0 1000, 1200, 1425, 1500, 2000 2000-7000
Св. 4,0 до 10,5
В95-2А, В95-2Б, В95-1А, АКМ От 1,0 до 10,5 1200, 1400, 1500 2000-7000
Полунагартованные
АМц, АмцС, АМг2, АМгЗ от 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-7000
Св. 0,7 до 4,0 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
Д12 От 0,5 до 4,0 1200, 1500 3000-4000
Нагартованные
А7, А6, А5, А0, АД0, АД1, АД00, АД От 0,3 до 10,5 600, 800, 900, 1000 2000
А7, А6, А5, А0, АД0, АД1, АД00, АД От 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-7000
Св. 0,7 до 4,0 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
АМц, АМцС, АМг2 От 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-7000
Св. 0,7 до 4,0 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
Закаленные и естественно состаренные
АВ, Д1А, Д16Б, Д16, Д16А От 0,7 до 10,5 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7200
Д16У От 0,5 до 4,0 1200, 1500
Закаленные и искусственно состаренные
АВ от 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-5000
Св. 0,7 до 10,5 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
В95А от 0,5 до 0,7 1000, 1200, 1425, 1500 2000-5000
Св. 0,7 до 4,0 1000, 1200, 1425, 1500, 2000 2000-7000
Св. 4,0 до 10,5
Нагартованные после закалки и естественного старения
Д16, Д16Б, Д16А От 1,5 до 7,5 1000, 1200, 1400, 1500 2000-7200

107. Толщина плакирующего слоя

Толщина листа, мм Толщина плакирующего слоя на каждой стороне листа, %,
от номинальной толщины листа, при плакировании
технологическом нормальном утолщенном
не более не менее
От 0,5 до 1,9
Св. 1,9 » 4,0
» 4,0 » 10,5
1,5 4,0
2,0
2,0
8,0
4,0

108. Механические свойства образцов из листов в состоянии поставки

Относи-
тельное удлинение при
l
=11,3 √ F
δ, %

Примечание. ГОСТ предусматривает и другие марки алюминиевых сплавов.