К какой группе металлов сплавов относится магний

Магний

Магний / Magnesium (Mg), 12

1,31 (шкала Полинга)

1105 по Цельсию

a=0,32029 нм, c=0,52000 нм Å

Ма́гний — элемент главной подгруппы второй группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 12. Обозначается символом Mg (лат. Magnesium ). Простое вещество магний (CAS-номер: 7439-95-4) — лёгкий, ковкий металл серебристо-белого цвета.

Содержание

История

Происхождение названия

В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари называли её горькой солью, а также английской, или эпсомской солью. Минерал эпсомит имеет состав MgSO4 · 7H2O. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита.

В 1792 году Антон фон Рупрехт получил новый металл, названный им австрием, восстановлением углём из белой магнезии. Позже было установлено, что «австрий» представляет собой магний крайне низкой степени чистоты, поскольку исходное вещество была сильно загрязнёно железом [2] .

Впервые был выделен в чистом виде сэром Гемфри Дэви в 1808 году дистилляцией ртути из магниевой амальгамы, которую он получил электролизом полужидкой смеси оксида магния и ртути.

Нахождение в природе

Кларк магния 19 кг/т. Это один из самых распространённых элементов земной коры. Большие количества магния находятся в морской воде. Главными видами нахождения магнезиального сырья являются:

Магнезиальные соли встречаются в больших количествах в солевых отложениях самосадочных озёр. Месторождения ископаемых солей карналлита осадочного происхождения известны во многих странах.

Магнезит образуется преимущественно в гидротермальных условиях и относится к среднетемпературным гидротермальным месторождениям. Доломит также является важным магниевым сырьём. Месторождения доломита широко распространены, запасы их огромны. Они ассоциируют с карбонатными толщами и большинство из них имеет докембрийский или пермский возраст. Доломитовые залежи образуются осадочным путём, но могут возникать также при воздействии на известняки гидротермальных растворов, подземных или поверхностных вод.

Типы месторождений

Природные источники магния:

  • ископаемые минеральные отложения (магнезиальные и калийно-магнезиальные карбонаты: доломит, магнезит),
  • морская вода,
  • рассолы (рапа соляных озёр).

Большая часть мировой добычи магния сосредоточена в США (43 %), странах СНГ (26 %) и Норвегии (17 %), возрастает доля Китая [3] .

Получение

Обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl2 (бишофит), натрия NaCl и калия KCl. В расплаве электрохимическому восстановлению подвергается хлорид магния:

Расплавленный металл периодически отбирают из электролизной ванны, а в неё добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много (около 0,1 %) примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок — флюсов, которые «отнимают» примеси от магния или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99,999 % и выше.

Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кремний или кокс:

Применение кремния позволяет получать магний из такого сырья, как доломит CaCO3·MgCO3, не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции:

Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырьё, но и морскую воду.

Физические свойства

Магний — металл серебристо-белого цвета с гексагональной решёткой, обладает металлическим блеском; пространственная группа P 63/mmc, параметры решётки a = 0,32029 нм, c = 0,52000 нм, Z = 2. При обычных условиях поверхность магния покрыта прочной защитной плёнкой оксида магния MgO, которая разрушается при нагреве на воздухе до примерно 600 °C, после чего металл сгорает с ослепительно белым пламенем с образованием оксида и нитрида магния Mg3N2. Плотность магния при 20 °C — 1,737 г/см³, температура плавления металла tпл = 651 °C, температура кипения tкип = 1103 °C, теплопроводность при 20 °C — 156 Вт/(м·К).

Магний высокой чистоты пластичен, хорошо прессуется, прокатывается и поддаётся обработке резанием.

Химические свойства

Смесь порошкового магния с перманганатом калия KMnO4 — взрывчатое вещество

Раскаленный магний реагирует с водой:
Mg + Н2О = MgO + H2
Щелочи на магний не действуют, в кислотах он растворяется легко с выделением водорода:
Mg + 2HCl = MgCl2 + H2
При нагревании на воздухе магний сгорает с образованием оксида и небольшого количества нитрида. При этом выделяется большое количество теплоты и световой энергии:
2Mg + О2 = 2MgO
3Mg + N2 = Mg3N2
Магний может гореть даже в углекислом газе:
2Mg + CO2 = 2MgO + C

Горящий магний нельзя тушить водой.

Применение

Применяется для восстановления металлического титана из тетрахлорида титана. Используется для получения лёгких и сверхлёгких сплавов (самолётостроение, производство автомобилей), а также для изготовления осветительных и зажигательных ракет.

Сплавы

Сплавы на основе магния являются важным конструкционным материалом в авиационной и автомобильной промышленности благодаря их лёгкости и прочности. Цены на магний в слитках в 2006 году составили в среднем 3 долл/кг. В 2012 году цены на магний составляют порядка 2,8-2,9 долл./кг.

Химические источники тока

Магний в виде чистого металла, а также его химические соединения (бромид, перхлорат) применяются для производства очень мощных резервных электрических батарей (например, магний-перхлоратный элемент, серно-магниевый элемент, хлористосвинцово-магниевый элемент, хлорсеребряно-магниевый элемент, хлористомедно-магниевый элемент, магний-ванадиевый элемент и др.) и сухих элементов (марганцево-магниевый элемент, висмутисто-магниевый элемент, магний-м-ДНБ элемент и др.). Химические источники тока на основе магния отличаются очень высокими значениями удельных энергетических характеристик и высоким разрядным напряжением.

Соединения

Гидрид магния — один из наиболее ёмких аккумуляторов водорода, применяемых для его хранения.

Огнеупорные материалы

Оксид магния MgO применяется в качестве огнеупорного материала для производства тиглей и специальной футеровки металлургических печей.

Перхлорат магния, Mg(ClO4)2 — (ангидрон) применяется для глубокой осушки газов в лабораториях, и в качестве электролита для химических источников тока с участием магния.

Фторид магния MgF2 — в виде синтетических монокристаллов применяется в оптике (линзы, призмы).

Бромид магния MgBr2 — в качестве электролита для химических резервных источников тока.

Военное дело

Свойство магния гореть белым ослепительным пламенем широко используется в военной технике для изготовления осветительных и сигнальных ракет, трассирующих пуль и снарядов, зажигательных бомб. В смеси с соответствующими окислителями он также является основным компонентом заряда светошумовых боеприпасов.

Медицина

Магний является жизненно-важным элементом, который находится во всех тканях организма и необходим для нормального функционирования клеток. Участвует в большинстве реакций обмена веществ, в регуляции передачи нервных импульсов и в сокращении мышц, оказывает спазмолитическое и антиагрегантное действие. Оксид и соли магния традиционно применяется в медицине в кардиологии, неврологии и гастроэнтерологии (аспаркам, сульфат магния, цитрат магния. Наиболее интересным природным ресурсом магния является минерал бишофит). Оказалось, что магниевые эффекты бишофита в первую очередь проявляются при транскутанном (через кожном) применении в лечении патологии опорно-двигательного аппарата. Бишофитотерапия использует биологические эффекты природного магния в лечении и реабилитации широкого круга заболеваний, в первую очередь — позвоночника и суставов, последствий травм, нервной и сердечно-сосудистой систем.

Фотография

Магниевый порошок с окисляющими добавками (нитрат бария, перманганат калия, гипохлорит натрия, хлорат калия и т. д.) применялся (и применяется сейчас в редких случаях) в фотоделе в химических фотовспышках (магниевая фотовспышка).

Аккумуляторы

Магниево-серные батареи — являются одними из самых перспективных, превосходя в теории ёмкость ионо-литиевых, однако, пока эта технологи находится на стадии лабораторных исследований в силу непреодолённости некоторых технических препятствий. [4]

Биологическая роль и токсикология

Магний — один из важных биогенных элементов, в значительных количествах содержится в тканях животных и растений (хлорофиллы). Его биологическая роль сформировалась исторически, в период зарождения и развития протожизни на нашей планете в связи с тем, что морская среда первобытной земли была преимущественно хлоридно-магниевая, в отличие от нынешней — хлоридно-натриевой.

Магний — часть солевого баланса живых организмов: недостаток магния ухудшает усвоение других микроэлементов, избыток — их вымывание (замещение) [5] [неавторитетный источник?] . Магний является кофактором многих ферментативных реакций. Магний необходим для превращения креатина фосфата в АТФ — нуклеотид, являющийся универсальным поставщиком энергии в живых клетках организма. Магний необходим на всех этапах синтеза белка.

Дефицит магния может проявляться по-разному: бессонница, хроническая усталость, остеопороз, артрит, фибромиалгия, мигрень, мышечные судороги и спазмы, сердечная аритмия, запоры, предменструальный синдром (ПМС). При потливости, частом употреблении слабительных и мочегонных, алкоголя, больших психических и физических нагрузках (в первую очередь при стрессах и у спортсменов) потребность в магнии увеличивается.

К пище, богатой магнием, относятся: кунжут, отруби, орехи. Магния совсем мало в хлебе, молочных, мясных и других повседневных продуктах питания современного человека. Суточная норма магния — порядка 300 мг для женщин и 400 мг для мужчин. По результатам последних исследований обнаружено, что цитрат магния является наиболее усваиваемым продуктом, содержащим магний [6] [7] .

Одним из наиболее биологически целесообразных источников магния при транскутанном (чрезкожном) всасывании является минерал бишофит, широко использующийся в целях медицинской реабилитации, физиотерапии и санаторно-курортного лечения. Преимуществом транскутанного применения является высокая биодоступность ионов магния, насыщающего локальные проблемные зоны минуя выделительную систему.

К какой группе металлов сплавов относится магний

Магний, свойства атома, химические и физические свойства.

24,304-24,307 1s2 2s2 2p6 3s2

Магний — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 12. Расположен во 2-й группе (по старой классификации — главной подгруппе второй группы), третьем периоде периодической системы.

Атом и молекула магния. Формула магния. Строение магния

Изотопы и модификации магния

Свойства магния (таблица): температура, плотность, давление и пр.

Физические свойства магния

Химические свойства магния. Взаимодействие магния. Реакции с магнием

Таблица химических элементов Д.И. Менделеева

История

С рудой в 18 – начале 19 века экспериментировали ученые Европы. Получать удавалось лишь сильно загрязненное вещество.

Настоящая история открытия начинается с середины 19 века, когда француз А.Бюсси и англичанин М.Фарадей получили материал достаточной степени чистоты. Оба использовали расплавленный хлорид магния. Первый восстанавливал вещество металлическим калием, второй – электролизом.

История названия вещества восходит ко временам Малой Азии. Магнезией назывался город, вблизи которого обнаружились залежи магнезита.

В России с середины 19 века используется термин «магний».

Атом и молекула магния. Формула магния. Строение магния:

Магний (лат. Magnesium, от др.-греч. βαρύς – «тяжёлый») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Mg и атомным номером 12. Расположен в 2-й группе (по старой классификации — главной подгруппе второй группы), третьем периоде периодической системы.

Магний – щёлочноземельный металл. Относится к группе цветных металлов.

Как простое вещество магний при нормальных условиях представляет собой лёгкий, ковкий металл серебристо-белого цвета.

Молекула магния одноатомна.

Химическая формула магния Mg.

Электронная конфигурация атома магния 1s2 2s2 2p6 3s2. Потенциал ионизации (первый электрон) атома магния равен 737,75 кДж/моль (7,646236(4) эВ).

Строение атома магния. Атом магния состоит из положительно заряженного ядра (+12), вокруг которого по трем атомным оболочкам движутся 12 электронов. При этом 10 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку магний расположен в третьем периоде, оболочек всего три. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома магния – на 3s-орбитали находится два спаренных электрона. В свою очередь ядро атома магния состоит из 12 протонов и 12 нейтронов. Магний относится к элементам s-семейства.

Радиус атома магния (вычисленный) составляет 145 пм.

Атомная масса атома магния составляет 24,304-24,307 а. е. м.

Магний, свойства атома, химические и физические свойства

Производство магниевых сплавов

Выплавку литейных магниевых сплавов производят:

  • в тигельных печах, работающих на жидком топливе, на газообразном топливе, на электричестве;
  • в электрических индукционных печах;
  • в отражательных печах.

Выплавку деформируемых магниевых сплавов производят:

  • в отражательных печах (3-12 т);
  • в индукционных печах (более 12 т).
Читайте также  Стандартные размеры листового металла

Во время выплавки магниевого сплава его поверхность усиленно защищают слоем флюса, чтобы не было контакта с кислородом. Применяются флюсы, изготовленные на основе солей фтора и хлора, а также щелочных металлов. В формовочные смеси также вводят специальные присадки чтобы избежать горения сплава.

Дальнейшую обработку литейных сплавов производят способами:

  • литьё в песчаные формы – изготовление отливок методом заливки металла в специально подготовленные литейные модели, где будущие пустоты изделия заполняются песком;
  • литьё в кокиль – изготовление отливок в разборных формах, пригодных к многократному употреблению;
  • литьё под давлением – изготовление отливок путём впрыскивания металла в форму под давлением.

Дальнейшую обработку деформируемых сплавов производят способами:

  • прессования – обработки сплава давлением путём выдавливания его из закрытой полости;
  • ковки – обработки сплава давлением посредством приложения к нему высокой ударной нагрузки;
  • штамповки – обработка сплава давлением посредством направленной пластической деформации;
  • горячей прокатки – обработка сплав давлением путём пропускания его между давящими валками при высоких температурах;
  • холодной прокатки – обработка сплав давлением путём пропускания его между давящими валками при низких температурах.

Способы обработки готовых изделий для улучшения их механических показателей:

  • закалка (гомогенизация);
  • закалка со искусственным старением;
  • отжиг на снятие механических напряжений (рекристаллизация);
  • отжиг на выравнивание структуры металла и на снижение зернистости (диффузный).

Свойства магния (таблица): температура, плотность, давление и пр.:

Подробные сведения на сайте ChemicalStudy.ru

(в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле)

1,57 г/см3 (при 651 °C и иных стандартных условиях, состояние вещества –жидкость)

201* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.

205* Эмпирический радиус атома магния согласно [1] составляет 160 пм.

206* Ковалентный радиус магния согласно [1] и [3] составляет 141±7 пм и 136 пм соответственно.

403* Температура кипения магния согласно [3] составляет 1090 °C (1363 K, 1994 °F).

407* Удельная теплота плавления (энтальпия плавления ΔHпл) магния согласно [3] составляет 9,20 кДж/моль.

408* Удельная теплота испарения (энтальпия кипения ΔHкип) магния согласно [3] составляет 131,8 кДж/моль.

410* Молярная теплоемкость магния согласно [3] составляет 24,90 Дж/(K·моль).

Нахождение в природе

Кларк магния — 1,95 % (19,5 кг/т). Это один из самых распространённых элементов земной коры. Большие количества магния находятся в морской воде в виде раствора солей. Основные минералы с высоким массовым содержанием магния:

  • морская вода — (0,12—0,13 %),
  • карналлит — MgCl2 • KCl • 6H2O (8,7 %),
  • бишофит — MgCl2 • 6H2O (11,9 %),
  • кизерит — MgSO4 • H2O (17,6 %),
  • эпсомит — MgSO4 • 7H2O (9,9 %),
  • каинит — KCl • MgSO4 • 3H2O (9,8 %),
  • магнезит — MgCO3 (28,7 %),
  • доломит — CaCO3·MgCO3 (13,1 %),
  • брусит — Mg(OH)2 (41,6 %).

Магнезиальные соли встречаются в больших количествах в солевых отложениях самосадочных озёр. Месторождения карналлита осадочного происхождения имеются во многих странах.

Магнезит образуется преимущественно в гидротермальных условиях и относящихся к среднетемпературным гидротермальным месторождениям. Доломит также является важным магниевым сырьём. Месторождения доломита широко распространены, запасы их огромны. Они генетически связаны с карбонатными осадочными слоями и большинство из них имеет докембрийский или пермский геологический возраст. Доломитовые залежи образуются осадочным путём, но могут возникать также при воздействии на известняки гидротермальных растворов, подземных или поверхностных вод.

Чрезвычайно редким минералом является самородный магний, образующийся в потоках восстановительных газов и впервые обнаруженный в 1991 году в береговых отложениях Чоны (Восточная Сибирь), а затем в лавах в Южном Гиссаре (Таджикистан).

Значение для человека

Магний изначально присутствует в биологических организмах. Однако в повседневных продуктах (хлеб, молоко, мясо) его минимум.

Жизненные процессы

Без металла невозможен нормальный ход важных жизненных процессов:

  • Синтез белка.
  • Работа нервной системы, сердечной мышцы.
  • Расширение сосудов.
  • Желчеотделение.
  • Работа ЖКТ.
  • Выведение из организма холестерина.
  • Сокращение мышц.

Суточная норма вещества для женщин и мужчин – 300 и 400 мг.

Потребность увеличивают психические, физические перегрузки, стрессы, злоупотребление алкоголем, потливость.

Нужно учитывать, что организм усваивает лишь треть общего количества поступившего вещества.

Усваивать микроэлемент полнее мешают фитин, жирный или насыщенный кальцием рацион.

Питание

Магнием насыщены порошковое какао, отруби, орехи, тыквенные семечки. Однако усваивать элемент мешает изобилие в них фитина.

Кладезем магния диетологи считают зеленые овощи. Это капуста, огурцы, горошек, спаржа, сельдерей, лук, шпинат, петрушка.

Последствия дефицита или избытка вещества

Симптомы дефицита магния:

  • Проблемы с костями (артрит, остеопороз).
  • Судороги, спазмы мышц.
  • Головная боль.
  • Сбои в работе ЖКТ (запоры), сердца (аритмия).

На эмоциональном плане нехватка вещества приводит к бессоннице, перманентной усталости, раздражительности (особенно ПМС).

Опасно и чрезмерное увлечение микроэлементом.

О передозировке металла сигнализируют:

  • Снижение артериального давления.
  • Тошнота, рвота.
  • Угнетение ЦНС, рефлекторной функции, дыхания.

Дело может закончиться комой, параличом дыхательных путей, сердечной мышцы.

Магний и его сплавы

СВОЙСТВА И ПРИМЕНЕНИЕ МАГНИЯ

Магний (Mg) впервые обнаружен в 1828 г. в соединениях, найденных вблизи греческого города Магнезий. В природе он встречается только в связанном состоянии и относится к числу наиболее распространенных металлов. На долю магниевых соединений приходится более 12% от общего количества известных минералов. Так же, как и алюминий, магний обладает высокими значениями теплоемкости, скрытой теплоты плавления, электропроводности и невысокой температурой плавления. Важнейшим свойством машин является малая плотность.

Магний обладает большой химической активностью по отношению к кислороду. В виде порошка или ленты магний легко загорается на воздухе, давая яркое ослепительное пламя. В атмосферных условиях он имеет удовлетворительную коррозионную стойкость, однако в присутствии влаги быстро корродирует. Магний реагирует с водой, образуя осадок гидроокиси. Он значительно корродирует в морской воде к 3%-ном растворе хлористого натрия. Сильно действуют на магний разбавленные минеральные кислоты (кроме плавиковой), а также большинство органических кислот.

Магний устойчив против воздействия растворов едких щелочей, фтористых солей, плавиковой кислоты, а также по отношению к спиртам (за исключением метилового), керосину, бензину, фреону и минеральным маслам. Он является энергичным восстановителем и вытесняет менее активные металлы из их соединений.

Магний отлично обрабатывается резанием, но механические и литейные свойства его невысоки, что исключает применение его в качестве конструкционного материала.

Со многими металлами магний образует сплавы, которые обладают более высокими по сравнению с чистым магнием механическими свойствами и коррозионной стойкостью, что значительно расширяет область применения магния.

Легкие магниевые сплавы используют в качестве конструкционного материала для различных частей самолетов, а также железнодорожного и автомобильного транспорта. Детали из магниевых сплавов, полученные литьем под давлением, применяют в производстве оптических и точных приборов. Магниевый порошок служит высококалорийным топливом в ракетной технике, в химической промышленности его используют для обезвоживания органических веществ и для синтеза сложных органических веществ.

Магний применяют также в качестве раскислителя в производстве стали и цветного литья, для получения трудновосстановимых металлов и их сплавов, для модифицирования чугуна, в качестве материала для анодов при катодной защите от коррозии стальных изделий и конструкций. Ниже приводятся физические и механические свойства магния:

Плотность при 20°С, г/см3

Удельная теплоемкость, кал/г

Скрытая теплота плавления, кал/г

Коэффициент линейного расширения, 1 /град

Временное сопротивление при растяжении магния, кГ/мм2

Предел текучести , кГ/мм2,

Относительное удлинение магния, %:

Предел упругости магния, кГ/мм2:

Модуль упругости, кГ/мм2

Модуль сдвига, кГ/мм2

Предел усталости отожженного магния базе 50*10 7 циклов, кГ/мм2

Твердость НВ магния, кГ/мм2

В качестве основных легирующих элементов сплавы па магниевой основе содержат алюминий и цинк, которые значительно улучшают механические свойства магния.

Марганец повышает коррозионную стойкость магниевых сплавов и способствует измельчению зерна, поэтому он присутствует во многих магниевых сплавах, а в сплаве Мл2 является основным легирующим элементом. Введение в магниевые сплавы титана и селена (до 0,5%) повышает пластичность сплавов и способствует измельчению зерна. Бериллий, в небольших количествах, создает окисную пленку и предохраняет его от дальнейшего окисления.

Примеси калия, натрия, никеля, меди, железа в магниевых сплавах относятся к числу вредных примесей.

Растворимость элементов, образующих с магнием сплавы, изменяется с изменением температуры. Это позволяет применять к магниевым сплавам упрочняющую термическую обработку.

Магниевые сплавы разделяют на литейные, предназначенные для производства отливок, и деформируемые.

В зависимости от механических свойств литейные сплавы можно условно разделить на три группы: средней прочности, высокопрочные и жаропрочные.

Сплавы средней прочности имеют временное сопротивление не менее 16 кГ/мм2. К ним относятся сплавы магния с алюминием и цинком типа Мл3. Сплавы этой группы не упрочняются термической обработкой. Для снятия внутренних напряжений детали сложной формы из указанных сплавов подвергают отжигу при 325°С. Сплавы средней прочности обладают удовлетворительной коррозионной стойкостью. Для повышения коррозионной стойкости детали из этих сплавов подвергают оксидированию.

Наибольшее применение из этой группы сплавов имеет сплав Мл6, в котором сочетаются высокие механические и технологические свойства. Из этого сплава изготовляют детали летательных аппаратов, детали колес, детали управления и крыла самолета, корпусы агрегатов, маслопомпы; в автомобильной промышленности — отливки картера двигателя, коробки передач, детали автомобильных колес; в тракторной промышленностикорпусы коробок передачи т. д.

Сплав Мл4 превосходит сплав Мл5 по коррозионной стойкости. Однако он обладает ограниченной свариваемостью, повышенной склонностью к образованию горячих трещин и микрорыхлоты в отливках, а также пониженной герметичностью и поэтому имеет ограниченное применение. Применяют сплав Мл4 главным образом для протекторной защиты в судостроении. Для отливок рекомендуется использовать песчаные формы. Для литья в кокиль и под давлением этот сплав не пригоден. Из высокопрочных сплавов машин с алюминием и цинком сплав Мл6 имеет самое высокое временное сопротивление. Пластичность сплава при комнатной температуре низкая.

Сплав Мл6, так же как и сплав Мл5, обладает хорошими литейными свойствами и применяется для получения сложных крупногабаритных отливок.

Сплав Мл12 при высоком пределе текучести обладает более высокой пластичностью по сравнению со сплавами Мл5 и Мл6. Это позволяет использовать его в условиях статических и знакопеременных нагрузок. По сравнению со сплавом Мл6 он имеет повышенную склонность к образованию горячих трещин при литье тонкостенных деталей.

Сплав Мл15 по пластичности при комнатной температуре занимает промежуточное положение между сплавами Мл12 и Мл6. Сплав Мл 15, легированный лантаном, превосходит сплав Мл 12 по пределам ползучести и длительной прочности и является самым жаропрочным из всех магниевых литейных сплавов высокой прочности. По литейным свойствам сплав Мл1б также превосходит сплав Мл12, отливки из него характеризуются высокой пластичностью.

Технологические свойства сплавов Мл 12 и Мл 15 зависят от содержания в них циркония. Наилучшие свойства достигаются при содержании циркония 0,8%. Магниевые жаропрочные литейные сплавы предназначаются для отливки деталей, работающих при 250—350°С и кратковременно при 350— 400°С. К этой группе сплавов относятся сплавы магния с РЗМ и Zr.

Магниевые литейные коррозионностойкие сплавы по коррозионной стойкости превосходят сплав Мл5. К ним относятся сплавы Мл4пч, Мл5пч, Мл2, а также сплавы магния с цирконием. Повышение коррозионной стойкости деталей из сплавов Мл4пч и Млбпч по сравнению со сплавами Мл4 и Мл6 достигается ограничением содержания вредных примесей и применением при литье бесхлоридных флюсов вместо хлористых флюсов. При этом получают отливки, практически свободные от включений хлористых флюсов, образующих с влагой, концентрированные растворы хлористых солей, разрушающих магниевые сплавы.

Сплавы Мл4пч и Мл5пч применяют для изготовления высоконагруженных деталей, длительно работающих в тяжелых условиях, в том числе в атмосферных условиях повышенной влажности.

Сплав Мл2 способен противостоять действию концентрированных растворов едкого натра при температурах до 120°С и растворов соды. Негашеная известь, известковые растворы и бетон разрушают отливки из сплава Мл2 очень медленно. Применение сплава Мл2 ограничивается из-за его низких (механических и технологических свойств. Применяют этот сплав для изготовления малонагруженных деталей простой конфигурации — баков, бензо-масляной арматуры, а также деталей, работающих в щелочной среде.

Читайте также  Как убрать коррозию с металла

Магниевые деформируемые сплавы. Эти сплавы подвергаются прокатке, прессованию, ковке и штамповке. К ним относятся сплавы, легированные алюминием, цинком, марганцем, цирконием, редкоземельными элементами, торием и другими металлами. Их применяют для изготовления деталей механической обработкой, сваркой и клепкой, объемной и листовой штамповкой. Из них делают прессованные прутки, полосы, профили и трубы, катаные плиты и листы, поковки и штамповки.

Сплавы магния с марганцем, содержащие марганца в пределах 1,3—2,5%, отличаются наиболее высокой коррозионной стойкостью, хорошей свариваемостью и высокой пластичностью. По механическим свойствам они относятся к сплавам низкой прочности с временным сопротивлением 17—23 кГ/мм2. Из этих сплавов изготовляют листы толщиной 0,8—10 мм, прессованные прутки диаметром до 130 мм, прессованные профили, поковки и штамповки.

Магниевые деформируемые сплавы с марганцем и небольшой добавкой церия (МА8), а также спла(в магния с алюминием, цинком и марганцем (МА2) относятся к группе сплавов средней прочности (временное сопротивление 23—26 кГ/мм2). Они обладают хорошей технологической пластичностью в нагартованном состоянии, достаточной для изготовления из них листов и всех других видов деформируемых полуфабрикатов, а также удовлетворительной общей коррозионной стойкостью. Сплав МА8 не подвержен коррозии .под напряжением, а сплав МА2 имеет незначительную склонность к коррозионному растрескиванию под напряжением. Для защиты сплавов этой группы от коррозии применяют покрытия неорганическими пленками и лакокрасочные покрытия.

Сплавы средней прочности термической обработкой не упрочняются. Они удовлетворительно свариваются аргонодуговой и контактной электросваркой. Детали из сплава МА2 могут работать при темпераiypax до 150°С, а из сплава МА8 — до 200—250°С.

Сплавы магниевые деформируемые с временным сопротивлением 26—40 кГ/мм2 образуют группу высокопрочных сплавов. В эту группу входят сплавы MA2-1, МА5, МА14. Из сплава МА2-1 изготовляют все виды деформируемых полуфабрикатов, а из остальных сплавов — прессованные изделия и штамповки.

Общая коррозионная стойкость магниевых деформируемых сплавов высокой прочности удовлетворительная. Однако при эксплуатации детали из этих сплавов необходимо защищать неорганическими пленками и лакокрасочными покрытиями. Они обладают различной склонностью к коррозии под напряжением.

Сплав МА5 рекомендуется применять для деталей, работающих при длительно растягивающих напряжениях, не превышающих 60% предела текучести при растяжении.

Сплав MA2-1 термической обработкой не упрочняется. Сплавы МА14 и МАБ подвергают закалке на воздухе или в горячей воде и искусственному старению.

Наибольшее применение из деформируемых магниевых сплавов высокой прочности получили сплавы МА14 и МА2-1.

Сплавы типа МА2-1 применяют для обшивки, изготовления перегородок и шпангоутов, а также в виде труб и профилей для сварных конструкций и деталей, выполняемых объемной штамповкой. Из них можно изготовлять кузовы, бензобаки, приборные щитки и другие детали спортивных автомобилей.

Сплав МА14 применяют для несвариваемых крупногабаритных нагруженных деталей, не имеющих тонких сечений.

Сплавы MA1, МА2, МА2-4, МАБ и МА14 пригодны для работы при температурах до 150°С, а сплав МА8—при температурах до 200°С.

не должно быть не менее 99,9%, а примесей— не более 0,1%, в том числе 0,04% Fe; 0,01% Si; 0,001% Ni; 0,005% Сu; 0,02% Al; 0,04% Μn; 0,005% Cl.

Магний поставляют в .виде чушек массой 8,0±1,0 кг или в виде слитков. Поверхность чушек магния должна быть без наплывов, неслитин, флюсовых включений и продуктов горения магния. В срезе чушек не должно быть флюсовых включений общей площадью более 4 мм2, а также других посторонних включений.

Магниевые сплавы: применение, классификация и свойства

Характеристики магния

Промышленное производство и использование магния началось сравнительно недавно – всего около 100 лет назад. Этот металл имеет малую массу, так как обладает сравнительно низкой плотностью (1,74 г/смᶟ), хорошую устойчивость в воздухе, щелочах, газовых средах с содержанием фтора и в минеральных маслах.

Температура его плавления составляет 650 градусов. Он характеризуется высокой химической активностью вплоть до самопроизвольного возгорания на воздухе. Предел прочности чистого магния составляет 190 Мпа, модуль упругости – 4 500 Мпа, относительное удлинение – 18%. Металл отличается высокой демпфирующей способностью (эффективно поглощает упругие колебания), что обеспечивает ему отличную переносимость ударных нагрузок и снижение чувствительности к резонансным явлениям.

К числу прочих особенностей данного элемента относятся хорошая теплопроводность, низкая способность поглощать тепловые нейтроны и взаимодействовать с ядерным топливом. Благодаря совокупности этих свойств магний является идеальным материалом для создания герметичных оболочек высокотемпературных элементов ядерных реакторов.

Магний хорошо сплавляется с разными металлами и относится к числу сильных восстановителей, без которых невозможен процесс металлотермии.

В чистом виде он в основном применяется как легирующая добавка в сплавах с алюминием, титаном и некоторыми другими химическими элементами. В черной металлургии с помощью магния проводится глубокая десульфурация стали и чугуна, а также улучшаются свойства последнего посредством сфероидизации графита.

Магний и легирующие добавки

К числу наиболее распространенных легирующих добавок, применяемых в сплавах на основе магния, относятся такие элементы, как алюминий, марганец и цинк. Посредством алюминия улучшается структура, повышается жидкотекучесть и прочность материала. Введение цинка также позволяет получать более прочные сплавы с уменьшенным размером зерен. С помощью марганца или циркония увеличивается коррозионная стойкость магниевых сплавов.

Добавление цинка и циркония обеспечивает повышенную прочность и пластичность металлосмесей. А наличие определенных редкоземельных элементов, например, неодима, церия, иттрия и пр., способствует значительному увеличению жаропрочности и максимизации механических свойств магниевых сплавов.

Для создания сверхлегких материалов с плотностью от 1,3 до 1,6 г/мᶟ в сплавы вводится литий. Данная добавка позволяет уменьшить их массу вдвое по сравнению с алюминиевыми металлосмесями. При этом их показатели пластичности, текучести, упругости и технологичности выходят на более высокий уровень.

Обозначение состояния металла

Алюминиевые деформируются сплавы маркируются по виду обработки. «Н» обозначает, что алюминий нагартованный. Возможные структурные состояния алюминия, указанные в обозначениях марки:

«Н1» – металл подвергался только нагортовке;

«Н2» – помимо пластической деформации производился частичный отжиг;

«Н3» – после нагортовки алюминий стабилизировали для снятия внутренних напряжений (нагрели до средних температур и медленно охладили);

«Н4» – технологией предусмотрено лакокрасочное покрытие нагартованного металла

«П» – полунагартованный сплав

«Н» –полностью нагартованный алюминий.

Существует и другая градация степени нагартовки: на ¼, ¾, сверхполной. От степени нагартовки зависит прочность алюминиевого деформируемого сплава. Нагортовка применяется, когда нет возможности другими способами упрочнить алюминий. В процессе холодной деформации повышается устойчивость к растрескиванию, предотвращается усталостное разрушение материала.

«Т» в марке говорит о термическом упрочнении металла:

закалке, нагреве до температуры +500°С с последующим охлаждением в воде;

старении, естественное производят в течение 5–7 суток при комнатной температуре, для искусственного металл нагревают, время старения сокращается.

Указывают одно из 10 базовых состояний от «Т1» до «Т10». Дополнительно маркируется форма снятия остаточных напряжений: методом сжатия или растяжения.

Отожженные изделия из алюминиевых деформируемых сплавов в марке имеют букву «М». Они обладают повышенной пластичностью. Степень отжига не градируется.

Литейные сплавы

К этой группе относятся сплавы с добавлением магния, предназначенные для производства разнообразных деталей и элементов методом фасонного литья. Они обладают разными механическими свойствами, в зависимости от которых делятся на три класса:

  • среднепрочные;
  • высокопрочные;
  • жаропрочные.

По химическому составу сплавы также подразделяются на три группы:

  • алюминий + магний + цинк;
  • магний + цинк + цирконий;
  • магний + редкоземельные элементы + цирконий.

Маркировка

На изделиях из алюминиевых деформируемых сплавов бывает маркировка двух видов:

  • буквенно-цифровая (указывается название сплава и его марка);
  • цифровая из четырех символов.

Дополнительно наносится маркировка технологической обработки.

САП, САС – спеченные из порошков металлы. А – технический алюминий, градируется по чистоте сплава. АК, АВ, В, АМг, АМц – термические упрочняемые марки, соответствующие по компонентному составу ГОСТ 4784-97.

Литейные свойства сплавов

Наилучшими литейными свойствами среди продуктов этих трех групп обладают алюминий-магниевые сплавы. Они относятся к классу высокопрочных материалов (до 220 МПа), поэтому являются оптимальным вариантом для изготовления деталей двигателей самолетов, автомобилей и другой техники, работающей в условиях механических и температурных нагрузок.

Для повышения прочностных характеристик алюминиево-магниевые сплавы легируют и другими элементами. А вот присутствие примесей железа и меди нежелательно, так как эти элементы оказывают отрицательное влияние на свариваемость и коррозионную стойкость сплавов.

Литейные магниевые сплавы приготавливаются в различных типах плавильных печей: в отражательных, в тигельных с газовым, нефтяным либо электрическим нагревом или в тигельных индукционных установках.

Для предотвращения горения в процессе плавки и при литье используются специальные флюсы и присадки. Отливки получают путем литья в песчаные, гипсовые и оболочковые формы, под давлением и с использованием выплавляемых моделей.

Список использованной литературы

  1. Белоусов Н. Н. Плавка и разливка сплавов цветных металлов. — Л.: Машиностроение, 1981. – 80с.
  2. Воздвиженский В. М. Литейные сплавы и технология их выплавки в машиностроении. – М.: Машиностроение, 1984. – 432с.
  3. Липницкий А. М., Морозов И. В. Технология цветного литья. — Л.: Машгиз, 1986. – 224с.
  4. Сажин В. Б. Основы материаловедения. М.: ТЕИС, 2005. – 156 с.
  5. Уткин Н. И. Металлургия цветных металлов. – М.: Металлургия, 1985. – 440 с.
  6. Элвелл В. Т., Вуд Д. Ф. Анализ новых металлов. Пер. с англ. – М.: Химия, 1970. — 220 с.

Деформируемые сплавы

По сравнению с литейными, деформируемые магниевые сплавы отличаются большей прочностью, пластичностью и вязкостью. Они используются для производства заготовок методами прокатки, прессования и штамповки. В качестве термической обработки изделий применяется закалка при температуре 350-410 градусов с последующим произвольным охлаждением без старения.

При нагреве пластические свойства таких материалов возрастают, поэтому обработка магниевых сплавов осуществляется посредством давления и при высоких температурах. Штамповка выполняется при 280-480 градусах под прессами посредством закрытых штампов. При холодной прокатке проводятся частые промежуточные рекристаллизационные отжиги.

При сварке магниевых сплавов прочность шва изделия может быть снижена на отрезках, где выполнялась подварка, из-за чувствительности таких материалов к перегреву.

Спеченные порошки

Порошковые алюминиевые деформируемые сплавы выпускают двух видов:

САС – сплавляемые из пудры.

САП характеризуются высокой жаропрочностью, они превосходят технический алюминий, выносят длительный нагрев в диапазоне температур 300–500°С, кратковременный в пределах +1100°С.

Порошковые алюминиевые деформируемые сплавы получают путем спекания измельченного металлического алюминия и оксида AL2O3. Концентрация оксида градируется, в САП1 от 6 до 9%, в САП4 от 18 до 22%. Во время спекания на частицах алюминия образуется оксидная пленка. Такая структура обладает стойкостью к нагреванию, так как температура плавления оксида свыше +1300°С. Сплав характеризуется высокой прочностью в пределах от 320 до 460 МПа.

Брикетированные полуфабрикаты поддаются механической обработке, их используют при производстве сортового, профильного и фасонного проката.

При повышении концентрации оксида ухудшается способность к прокатке, штамповке, металл приходится нагревать свыше +500°С.

САС помимо алюминия и оксида содержат легирующие добавки: хром, кремний, никель, титан, цинк, натрий, магний и другие. Иногда компонентный состав полностью соответствует ГОСТ 4784-97, обладают схожими свойствами, но отличаются повышенной стабильностью при нагреве. Используются для производства деталей, испытывающих термическое напряжение. В отличие от литья, детали из порошковых алюминиевых деформируемых сплавов не содержат шлаковых включений, пленов, других дефектов, связанных с нагревом алюминия. Детали имеют гомогенную структуру, их нет необходимости подвергать отжигу.

Сферы применения сплавов с добавления магния

Посредством методов литья, деформации и термической обработки сплавов изготавливаются различные полуфабрикаты – слитки, плиты, профили, листы, поковки и т.д. Эти заготовки используются для производства элементов и деталей современных технических устройств, где приоритетную роль играет весовая эффективность конструкций (сниженная масса) при сохранении их прочностных характеристик. По сравнению с алюминием магний легче в 1,5 раза, а со сталью – в 4,5.

В настоящее время применение магниевых сплавов широко практикуется в авиакосмической, автомобилестроительной, военной и прочих отраслях, где их высокая стоимость (некоторые марки содержат в своем составе достаточно дорогостоящие легирующие элементы) оправдывается с экономической точки зрения возможностью создания более долговечной, быстрой, мощной и безопасной техники, которая сможет эффективно работать в экстремальных условиях, в том числе и при воздействии высоких температур.

Благодаря высокому электрическому потенциалу эти сплавы являются оптимальным материалом для создания протекторов, обеспечивающих электрохимическую защиту стальных конструкций, например, деталей автомобилей, подземных сооружений, нефтяных платформ, морских судов и т.д., от коррозионных процессов, происходящих под воздействием влаги, пресной и морской воды.

Читайте также  Пресс для штамповки листового металла

Нашли применение сплавы с добавлением магния и в разных радиотехнических системах, где из них изготавливают звукопроводы ультразвуковых линий для задержки электросигналов.

Неупрочняемые

Гомогенные системы Al—Mg, обозначаемые «АМц» (алюминий, легированный магнием) и Al—Mn, маркированные «АМг» (легирующим компонентом является марганец). При нагревании в них укрупняется размер зерна, поэтому их упрочнят в холодном виде нагартовкой (метод холодной пластической деформации под ударной нагрузкой). Неупрочняемые алюминиевые деформируемые сплавы характеризуются:

  • повышенной пластичностью;
  • способностью деформироваться под давлением без разрывов;
  • хорошей свариваемостью;
  • устойчивостью к коррозионным разрушениям в условиях повышенной влажности.

Металл используют для производства полуфабрикатов, профиля и деталей для судостроения, нефтеперерабатывающей, химической промышленности.

Магниевые сплавы: применение, классификация и свойства

Магниевые руды.

Также по теме:
ХИМИЯ

Магний широко распространен в природе и составляет около 2% земной коры. Из 60 с лишним источников иона магния на поверхности и в недрах земли в качестве сырья для промышленного производства металлического магния используются только шесть: брусит (гидроксид магния), карналлит (гексагидрат двойного хлорида магния и калия), доломит (двойной карбонат кальция и магния), магнезит (карбонат магния), озерные и скважинные (пластовые) воды и морская вода, в которой содержится 0,13% хлорида магния. Для электролитического процесса использовались также раствор хлорида магния, являющийся отходом производства поташа, и выпарная морская соль.

Литейные сплавы

К этой группе относятся сплавы с добавлением магния, предназначенные для производства разнообразных деталей и элементов методом фасонного литья. Они обладают разными механическими свойствами, в зависимости от которых делятся на три класса:

  • среднепрочные;
  • высокопрочные;
  • жаропрочные.

По химическому составу сплавы также подразделяются на три группы:

  • алюминий + магний + цинк;
  • магний + цинк + цирконий;
  • магний + редкоземельные элементы + цирконий.

Электролитический способ.

Существуют четыре электролитических процесса, различающихся способами получения исходного хлорида магния, но во всех случаях сырьем служит карналлит, содержащий шесть молекул воды. Первые четыре молекулы удаляются нагреванием на воздухе, однако при дальнейшем нагревании образуются нежелательные оксиды и оксихлориды. Полное обезвоживание достигается разными методами.

По технологии обезвоживание завершается отделением остаточной воды в электролизере. При этом растворяется анод, в шламе электролизера образуется оксид магния, и выделяется влажный хлор.

Магниевые заводы в России, Украине и Казахстане работают на обезвоженном карналлите. На первой стадии обезвоживания – распылительной сушке – без гидролиза удаляются четыре молекулы воды из шести. Полученный продукт может транспортироваться по пневможелобам и не слеживается при перевозке в закрытых товарных вагонах на дальние расстояния. Окончательное обезвоживание осуществляется плавлением и хлорированием на металлургических заводах.

Исходным продуктом для процесса служит кальцинированный с каустиком оксид магния высокой чистоты, который может быть получен разными способами. Этот оксид хлорируется непосредственно в присутствии углерода, что дает обезвоженный хлорид магния для электролизера. Все три отмеченных процесса требуют использования хлора, являющегося побочным продуктом электролиза.

По технологии хлорид магния сначала обрабатывается в распылительных сушилках для удаления основной массы воды. Окончательное обезвоживание осуществляется в грануляционной башне в атмосфере сухих паров соляной кислоты.

Электролизеры, конструкции которых весьма разнообразны, могут быть разделены на два основных типа: в виде нефутерованной стальной ванны с наружным подогревом, способной сохранять расплав в жидком состоянии при отключении электроэнергии, и – с внутренним подогревом.

Получение и производство

Для изготовления сплавов используются материалы высокой чистоты, поскольку, как говорилось выше, даже мельчайшие примеси нежелательных элементов могу существенно ухудшить свойства готового продукта.

Получение сплавов магния облегчается тем, что температура плавления расплава не превосходит 700˚С. Для получения материала с требуемыми свойствами в расплав чистого магния вводят необходимое количество легирующих элементов. Газовый состав атмосферы вокруг расплава должен быть очищен от водорода, поскольку его высокая растворимость в магнии способна привести к дефектам внутренней структуры.

Металлотермический способ.

В промышленности применяются три разных процесса термического восстановления. Все они периодические, вакуумные, основаны на использовании ферросилиция в качестве восстановителя, для двух из них исходным материалом служит доломит.

Процесс Пиджона проводится в реторте малого диаметра с внешним подогревом, которая дает около 120 кг магния в сутки. Заводы с технологией Пиджона имеются в Канаде, Японии и Индии. В процессе Больцано, применяемом в Италии и Бразилии, используется нагреваемая изнутри электропечь, которая дает свыше 2 т металла в сутки. Процесс «Магнетерм» отличается от двух предыдущих тем, что позволяет периодически удалять без нарушения вакуума расплавленный шлак, увеличивая тем самым объем плавки. Печь сопротивления нагревается изнутри, для разжижения шлака вводится флюс из оксида алюминия, и размер суточной плавки достигает 11 т. Процесс «Магнетерм» применяется в США, Франции, Югославии и Японии.

Обработка отливок

Повысить механические свойства отливок на основе магния можно, применяя несколько методик:

  • гомогенизация (закалка);
  • закалка со старением для стабилизации свойств;
  • рекристализационный отжиг для снятия механических напряжений после обработки давлением;
  • диффузионный отжиг для выравнивания внутренней структуры и химического состава в зернах металла.

Отливки из алюминиево-магниевого сплава

Следует заметить, что у большинства сплавов после термической обработки механическая прочность не повышается.

Конструкционные виды применения.

Магний пригоден для литья и обычных методов металлообработки. Как и большинство других металлов, он нуждается в легировании для повышения прочности и твердости. В качестве легирующих элементов магния чаще всего применяются алюминий, цинк, марганец, кремний, цирконий и редкоземельные металлы.

Магний отличается очень хорошими литьевыми свойствами. В автомобильной промышленности из магния отливаются крышки клапанных механизмов, картеры сцепления, колеса, картеры ведущего моста, карбюраторы, каркасы сидений, приборные доски и фланцы воздушных фильтров. Неавтомобильные применения охватывают широкий спектр изделий, от компьютерных компонентов до рукояток спортивных луков.

Малая плотность магния особенно важна в авиационно-космических деталях, которые изготавливаются литьем в песчаные формы и по выплавляемым моделям. Детали, работающие при высоких температурах, изготовляются из сплавов магния с цирконием, серебром, иттрием и редкоземельными металлами. Типичные изделия такого рода – картеры коробок передач и редукторов, каркасы кабины экипажа, воздухозаборники и механизмы реверса тяги.

Магний применяется также в виде изделий и полуфабрикатов, обрабатываемых давлением, таких, как выдавленные профили, поковки, листовой и толстолистовой прокат. Из такой продукции изготовляются самые различные изделия, от хлебопекарных стеллажей и теннисных ракеток до инструментов для отделочной обработки бетона и оболочек ядерных тепловыделяющих элементов.

Виды сплавов магния, маркировка

Магний – химически активный металл, поэтому выбор легирующих элементов для него ограничен. Сплавы магния подразделяются на два вида:

1. Литейные сплавы – те, из которых формовка готовых изделий получается посредством литья. Наиболее употребляемые химические составы:

  • Mg – Al – Zn,
  • Mg – Zn – Zr,
  • Mg – Nd – Zr

2. Деформируемые сплавы – те, из которых формовка готовых изделий получается посредством механического воздействия (прессовкой, ковкой, штамповкой и прокаткой). Наиболее употребляемые химические составы:

  • Mg – Al – Zn,
  • Mg – Zn – Zr.

Маркировка литейных сплавов (ГОСТ 2856) осуществляется посредством букв МЛ и цифры, показывающей номер модификации сплава. В настоящее время марки следующие: МЛ1 – МЛ20.

Маркировка деформируемых сплавов (ГОСТ 14957) осуществляется посредством букв МА и цифры, показывающей номер модификации. Марки: МА1 – МА19.

Кроме того, выделяют подгруппу жаропрочных магниевых литейных сплавов, в которой к маркировке добавляется буква В: ВМЛ1 – ВМЛ2.

При маркировании сплавов магния дополнительно используют аббревиатуры «п.ч» и «о.н», которые расшифровываются как «повышенной чистоты» и «общего назначения».

Показатели отдельных магниевых сплавов:

  • сплавы МЛ4, МЛ5, МЛ6 – обладают самыми лучшими литейными свойствами, показывают большой предел текучести, дают невысокую усадку и не образуют усадочную раковину;
  • сплавы МЛ9, МЛ10, МЛ11, МЛ12, МЛ13, МЛ14 – являются жаропрочными, способны выносить высокие температуры до 400 ºС, сопротивляются статической и усталостной нагрузкам
  • сплавы МА11, МА12 – повышенная жаростойкость;
  • сплавы МА14, МА19 – несвариваемые, что следует учитывать при заказе.

Неконструкционные виды применения.

Сравнительно небольшие добавки магния повышают прочность и коррозионную стойкость алюминия. Поэтому магний широко используется в качестве легирующего элемента для алюминия.

Магний играет важную роль в процессах десульфуризации чугуна и стали. Сера ухудшает свойства стали. У магния же высокое сродство к сере, и поэтому при добавлении его к расплавленному чугуну содержание серы в чугуне резко понижается.

Магний применяется и в производстве чугуна с шаровидным графитом. Такой чугун получают, добавляя в расплав небольшое, но точно известное количество магния; при этом графит в чугуне образует не пластинчатые чешуйки, а сферические включения, вследствие чего отливки приобретают повышенные прочность и пластичность. Литой чугун с шаровидным графитом применяется для изготовления деталей автомобилей и сельскохозяйственной техники, труб и трубопроводной арматуры.

Магний используется в качестве восстановителя в производстве бериллия, титана, циркония, гафния и урана. В электрохимии он широко применяется в качестве растворимого (расходуемого) анода для предотвращения коррозии стали в подземных складских резервуарах, трубопроводах и бытовых водонагревателях. Благодаря высокой долговечности при хранении он применяется также в аварийных электрических аккумуляторах и активируемых морской водой радиогидроакустических буях. И наконец, он применяется в качестве одного из химикатов для реакций Гриньяра в производстве фармацевтических препаратов, духов и тетраметилсвинца – присадки к бензину. См. также СПЛАВЫ; МАГНЕЗИТ; МАГНИЙ; МИНЕРАЛЬНЫЕ РЕСУРСЫ; СВАРКА.

Свойства и влияние легирующих компонентов

Магний как металл обладает негативных для его промышленного применения свойств: пониженной коррозионной устойчивостью и воспламеняемостью при температурах выше 400 ºС. Для снижения этих негативных свойств, а также для улучшения технологических показателей в магний вводят легирующие добавки.

Введение легирующих добавок следующим образом изменяет свойства магния:

  • алюминий – улучшает внутреннюю структуру отливок, повышает прочность, увеличивает жидкотекучесть;
  • цинк – уменьшает зернистость, повышает прочность;
  • марганец – значительно увеличивает коррозионную устойчивость магниевых сплавов, повышает прочность;
  • цирконий – уменьшает зернистость, повышает прочность, увеличивает пластичность; — редкоземельные элементы (неодим, иттрий, церий), лантан, торий – усиливают жаропрочность, улучшают механические свойства;
  • литий – значительно снижает плотность, увеличивает пластичность, увеличивает предел текучести, улучшает показатели при обработке магниевого сплава давлением, повышает устойчивость к криогенным температурам, повышает показатели ударной вязкости, улучшает показатели свариваемости.

Вредные для магниевых сплавов примеси снижают коррозионную устойчивость и ухудшают растворимость легирующих добавок. Ко вредным примесям относятся:

  • железо;
  • никель;
  • кремний;
  • медь.

Список использованной литературы

  1. Белоусов Н. Н. Плавка и разливка сплавов цветных металлов. — Л.: Машиностроение, 1981. – 80с.
  2. Воздвиженский В. М. Литейные сплавы и технология их выплавки в машиностроении. – М.: Машиностроение, 1984. – 432с.
  3. Липницкий А. М., Морозов И. В. Технология цветного литья. — Л.: Машгиз, 1986. – 224с.
  4. Сажин В. Б. Основы материаловедения. М.: ТЕИС, 2005. – 156 с.
  5. Уткин Н. И. Металлургия цветных металлов. – М.: Металлургия, 1985. – 440 с.
  6. Элвелл В. Т., Вуд Д. Ф. Анализ новых металлов. Пер. с англ. – М.: Химия, 1970. — 220 с.

Радиоактивный магний

Известно шесть радиоактивных изотопов М., из них пять с массовыми числами 20, 21, 22, 23 и 27 имеют периоды полураспада от десятых долей секунды до 10 мин. Практическое значение имеет только шестой радиоактивный изотоп М.— 28Mg, открытый в 1953 г., с периодом полураспада 21,3 часа (20,8—22,1, по данным разных авторов). 28Mg распадается с образованием короткоживущего 28Al. При измерениях регистрируется излучение обоих изотопов: бета — 0,42 и 2,87 МэВ и гамма — 0,032 МэВ (96%), 0,40 МэВ (31%), 0,95 МэВ (29%), 1,35 МэВ (70%), 1,78 МэВ (100%).

При помощи 28Mg изучали обмен М. в организме человека и животных, его содержание в плазме крови и тканях животных. Установлено, что ок. 90% всего введенного М. задерживается в организме с эффективным периодом полувыведения более 200 сут. 28Mg ограниченно доступен, поэтому нормы радиационной безопасности при работе с ним пока не предусмотрены.