Единицы твердости металлов перевод

Твердость – главный показатель качества инструмента

Выбирая инструмент для работы, мы сталкиваемся с такой его характеристикой как твердость, которая характеризует его качество. Чем выше этот показатель, тем выше его способность сопротивляться пластической деформации и износу при воздействии на обрабатываемый материал. Именно этот показатель определяет, согнется ли зуб пилы при распиловке заготовок, или какую проволоку смогут перекусить кусачки.

Метод Роквелла

Среди всех существующих методов определения твердости сталей и цветных металлов самым распространенным и наиболее точным является метод Роквелла.

Метод Роквелла — определение твердости металла

Проведение измерений и определение числа твердости по Роквеллу регламентируется соответствующими документами ГОСТа 9013-59. Этот метод реализуется путем вдавливания в тестируемый материал инденторов – алмазного конуса или твердосплавного шарика. Алмазные инденторы используются для тестирования закаленных сталей и твердых сплавов, а твердосплавные шарики – для менее твердых и относительно мягких металлов. Измерения проводят на механических или электронных твердомерах.

Методом Роквелла предусматривается возможность применения целого ряда шкал твердости A, B, C, D, E, F, G, H (всего – 54), каждая из которых обеспечивает наибольшую точность только в своем, относительно узком диапазоне измерений.

Для измерения высоких значений твердости алмазным конусом чаще всего используются шкалы «А», «С». По ним тестируют образцы из закаленных инструментальных сталей и других твердых стальных сплавов. А сравнительно более мягкие материалы, такие как алюминий, медь, латунь, отожженные стали испытываются шариковыми инденторами по шкале «В».

Пример обозначения твердости по Роквеллу: 58 HRC или 42 HRB.

Впереди стоящие цифры обозначают число или условную единицу измерения. Две буквы после них – символ твердости по Роквеллу, третья буква – шкала, по которой проводились испытания.

(!) Два одинаковых значения от разных шкал – это не одно и то же, например, 58 HRC ≠ 58 HRA. Сопоставлять числовые значения по Роквеллу можно только в том случае, если они относятся к одной шкале.

Диапазоны шкал Роквелла по ГОСТ 8.064-94:

A 70-93 HR
B 25-100 HR
C 20-67 HR

Слесарный инструмент

Инструменты для ручной обработки металлов (рубка, резка, опиливание, клеймение, пробивка, разметка) изготавливают из углеродистых и легированных инструментальных сталей. Их рабочие части подвергают закаливанию до определенной твердости, которая должна находиться в пределах:

Ножовочные полотна, напильники 58 – 64 HRC
Зубила, крейцмессели, бородки, кернеры, чертилки 54 – 60 HRC
Молотки (боек, носок) 50 – 57 HRC

Монтажный инструмент

Сюда относятся различные гаечные ключи, отвертки, шарнирно-губцевый инструмент. Норму твердости для их рабочих частей устанавливают действующие стандарты. Это очень важный показатель, от которого зависит, насколько инструмент износостоек и способен сопротивляться смятию. Достаточные значения для некоторых инструментов приведены ниже:

Гаечные ключи с размером зева до 36 мм 45,5 – 51,5 HRC
Гаечные ключи с размером зева от 36 мм 40,5 – 46,5 HRC
Отвертки крестовые, шлицевые 47 – 52 HRC
Плоскогубцы, пассатижи, утконосы 44 – 50 HRC
Кусачки, бокорезы, ножницы по металлу 56 – 61 HRC

Металлорежущий инструмент

В эту категорию входит расходная оснастка для обработки металла резанием, используемая на станках или с ручными инструментами. Для ее изготовления используются быстрорежущие стали или твердые сплавы, которые сохраняют твердость в холодном и перегретом состоянии.

Метчики, плашки 61 – 64 HRC
Зенкеры, зенковки, цековки 61 – 65 HRC
Сверла по металлу 63 – 69 HRC
Сверла с покрытием нитрид-титана до 80 HRC
Фрезы из HSS 62 – 66 HRC


Примечание:
Некоторые производители фрез указывают в маркировке твердость не самой фрезы, а материала, который она может обрабатывать.

Крепежные изделия

Существует взаимосвязь между классом прочности крепежа и его твердостью. Для высокопрочных болтов, винтов, гаек эта взаимосвязь отражена в таблице:

Если для болтов и гаек главной механической характеристикой является класс прочности, то для таких крепежных изделий как стопорные гайки, шайбы, установочные винты, твердость не менее важна.

Стандартами установлены следующие минимальные / максимальные значения по Роквеллу:

Стопорные кольца до Ø 38 мм 47 – 52 HRC
Стопорные кольца Ø 38 -200 мм 44 – 49 HRC
Стопорные кольца от Ø 200 мм 41 – 46 HRC
Стопорные зубчатые шайбы 43.5 – 47.5 HRB
Шайбы пружинные стальные (гровер) 41.5 – 51 HRC
Шайбы пружинные бронзовые (гровер) 90 HRB
Установочные винты класса прочности 14Н и 22Н 75 – 105 HRB
Установочные винты класса прочности 33Н и 45Н 33 – 53 HRC

Относительное измерение твердости при помощи напильников

Стоимость стационарных и портативных твердомеров довольно высока, поэтому их приобретение оправдано только необходимостью частой эксплуатации. Многие мастеровые по мере надобности практикуют измерять твердость металлов и сплавов относительно, при помощи подручных средств.

Измерение твердости при помощи напильников

Опиливание образца напильником – один из самых доступных, однако далеко не самый объективный способ проверки твердости стальных деталей, инструмента, оснастки. Напильник должен иметь не затупленную двойную насечку средней величины №3 или №4. Сопротивление опиливанию и сопровождающий его скрежет позволяет даже при небольшом навыке отличить незакаленную сталь от умеренно (40 HRC) или твердо закаленной (55 HRC).

Для тестирования с большей точностью существуют наборы тарированных напильников, именуемые также царапающий твердомер. Они применяются для испытания зубьев пил, фрез, шестерен. Каждый такой напильник является носителем определенного значения по шкале Роквелла. Твердость измеряется коротким царапанием металлической поверхности поочередно напильниками из набора. Затем выбираются два близко стоящие – более твердый, который оставил царапину и менее твердый, который не смог поцарапать поверхность. Твердость тестируемого металла будет находиться между значениями твердости этих двух напильников.

Переводная таблица твердости

Для сопоставления чисел твердости Роквелла, Бринелля, Виккерса, а также для перевода показателей одного метода в другой существует справочная таблица:

Виккерс, HV Бринелль, HB Роквелл, HRB
100 100 52.4
105 105 57.5
110 110 60.9
115 115 64.1
120 120 67.0
125 125 69.8
130 130 72.4
135 135 74.7
140 140 76.6
145 145 78.3
150 150 79.9
155 155 81.4
160 160 82.8
165 165 84.2
170 170 85.6
175 175 87.0
180 180 88.3
185 185 89.5
190 190 90.6
195 195 91.7
200 200 92.8
205 205 93.8
210 210 94.8
215 215 95.7
220 220 96.6
225 225 97.5
230 230 98.4
235 235 99.2
240 240 100

Виккерс, HV Бринелль, HB Роквелл, HRC
245 245 21.2
250 250 22.1
255 255 23.0
260 260 23.9
265 265 24.8
270 270 25.6
275 275 26.4
280 280 27.2
285 285 28.0
290 290 28.8
295 295 29.5
300 300 30.2
310 310 31.6
320 319 33.0
330 328 34.2
340 336 35.3
350 344 36.3
360 352 37.2
370 360 38.1
380 368 38.9
390 376 39.7
400 384 40.5
410 392 41.3
420 400 42.1
430 408 42.9
440 416 43.7
450 425 44.5
460 434 45.3
470 443 46.1
490 47.5
500 48.2
520 49.6
540 50.8
560 52.0
580 53.1
600 54.2
620 55.4
640 56.5
660 57.5
680 58.4
700 59.3
720 60.2
740 61.1
760 62.0
780 62.8
800 63.6
820 64.3
840 65.1
860 65.8
880 66.4
900 67.0
1114 69.0
1120 72.0


Примечание:
В таблице приведены приближенные соотношения чисел, полученные разными методами. Погрешность перевода значений HV в HB составляет ±20 единиц, а перевода HV в HR (шкала C и B) до ±3 единиц.

При выборе инструмента желательно предпочесть модели известных производителей. Это дает уверенность в том, что приобретаемый продукт изготовлен с соблюдением технологий, а его твердость отвечает заявленным значениям.

Соотношение твердости по Роквеллу и Бринеллю различных изделий.

Единицы твердости металлов перевод

  • ЛГМ
  • Литьё
  • Лаборатория
  • Обрубка
  • Термическая обработка
  • Механическая обработка
  • Видео
  • Продукция
    • Стальное литьё
      • Чертежи (Сталь)
      • Чертежи (Марганцовистая сталь)
      • Марганцовистая сталь
      • Жаропрочная сталь
      • Сталь для отливок
      • Конструкционная легированная сталь
      • Легированная сталь
      • Углеродистая сталь
    • Чугунное литьё
      • Чертежи (Чугун)
      • Чугун
      • Хромистый чугун
      • Чушковой чугун
      • Тюбинги
      • Чугунные утяжелители кольцевые (УЧК)
      • Корпуса
    • Художественное литьё
      • Художественное литьё
      • Парковое литьё
    • ЛГМ
    • Литьё
    • Лаборатория
    • Обрубка
    • Термическая обработка
    • Механическая обработка
    • Видео
  • Продукция
    • Стальное литьё
      • Чертежи (Сталь)
      • Чертежи (Марганцовистая сталь)
      • Марганцовистая сталь
      • Жаропрочная сталь
      • Сталь для отливок
      • Конструкционная легированная сталь
      • Легированная сталь
      • Углеродистая сталь
    • Чугунное литьё
      • Чертежи (Чугун)
      • Чугун
      • Хромистый чугун
      • Чушковой чугун
      • Тюбинги
      • Чугунные утяжелители кольцевые (УЧК)
      • Корпуса
    • Художественное литьё
      • Художественное литьё
      • Парковое литьё

    Таблица соответствия HB — HRC

    Твердость по Бриннелю, НВ Твердость по Роквеллу, HRC
    207 18
    212 19
    217 20
    223 21
    229 22
    235 23
    241 24
    248 25
    255 26
    262 27
    269 28
    277 29
    286 30
    293 31
    302 33
    311 34
    321 35
    332 36
    340 37
    351 38
    364 39
    375 40
    387 41
    402 43
    418 44
    430 45
    444 47
    460 48
    477 49
    495 51
    512 52
    532 54
    555 56
    578 58
    600 59
    627 61
    652 63

    НВ — при применении стального шарика (для металлов и сплавов твердостью менее 450 единиц);

    HBW — при применении шарика из твер­дого сплава (для металлов и сплавов твердо­стью более 450 единиц).

    Символу НВ (HBW) предшествует число­вое значение твердости из трех значащих цифр, а после символа указывают диаметр шарика, значение приложенной силы (в кгс), продолжительность выдержки, если она отли­чается от 10 до 15 с.

    Читайте также  Теоретическая масса металлопроката

    — алмазным конусом с общей нагрузкой 150 кгс. Твердость измеряется по шкале С и обозначается HRC (например, 65 HRC). Таким образом определяют твердость закаленной и отпущенной сталей, материалов средней твердости, поверхностных слоев толщиной более 0,5 мм;

    — алмазным конусом с общей нагрузкой 60 кгс. Твердость измеряется по шкале А, совпадающей со шкалой С, и обозначается HRA. Применяется для оценки твердости очень твердых материалов, тонких поверхностных слоев (0,3 … 0,5 мм) и тонколистового материала;

    Таблица перевода твердости металлов

    диапазоны шкал и их сравнение

    &nbsp Метод измерения твердости металлов по Бринеллю регламентирует ГОСТ 9012-59 (ИСО 6506-81. ИСО 410-82) (в редакции 1990 г.).

    Сущность метода заключается во вдавливании шарика (стального или из твердого сплава) в образец (изделие) под действием силы, приложенной перпендикулярно поверхности образца в течение определенного времени, и измерении диаметра отпечатка после снятия силы.

    Твердость по Бринеллю обозначают символом НВ или HBW.

    НВ – при применении стального шарика (для металлов и сплавов твердостью менее 450 единиц);
    HBW – при применении шарика из твердого сплава (для металлов и сплавов твердостью более 450 единиц).

    Символу НВ (HBW) предшествует числовое значение твердости из трех значащих цифр, а после символа указывают диаметр шарика, значение приложенной силы (в кгс). продолжительность выдержки, если она отличается от 10 до 15 с.

    250 НВ 5/750 – твердость по Бринеллю 250, определенная при применении стального шарика диаметром 5 мм при силе 750 кгс (7355 Н) и продолжительности выдержки от 10 до 15 с.

    575 HBW 2,5/187,5/30 – твердость по Бринеллю 575, определенная при применении шарика из твердого сплава диаметром 2,5 мм при силе 187,5 кгс (1839 Н) и продолжительности выдержки 30 с.

    При определении твердости стальным шариком или шариком из твердого сплава диаметром 10 мм при силе 3000 кгс (29420 Н) и продолжительности выдержки от 10 до 15 с твердость по Бринеллю обозначают только числовым значением твердости и символом НВ или HBW.

    Пример обозначения: 185 НВ, 600 HBW.

    &nbsp Метод измерения твердости черных и цветных металлов и сплавов при нагрузках от 9,807 Н (1 кгс) до 980,7 Н (100 кгс) по Виккерсу регламентирует ГОСТ 2999 – 75* (в редакции 1987 г.).

    Измерение твердости основано на вдавливании алмазного наконечника в форме правильной четырехгранной пирамиды в образец (изделие) под действием силы, приложенной в течение определенного времени, и измерении диагоналей отпечатка, оставшихся на поверхности образца после снятия нагрузки.

    Твердость по Виккерсу при условиях испытания – силовое воздействие 294.2 Н (30 кгс) и время выдержки под нагрузкой 10 . 15 с. обозначают цифрами, характеризующими величину твердости, и буквами HV.

    Пример обозначения: 500 HV – твердость по Виккерсу, полученная при силе 30 кгс и времени выдержки 10 . 15 с.

    При других условиях испытания после букв HV указывают нагрузку и время выдержки.

    Пример обозначения: 220 HV 10/40 – твердость по Виккерсу, полученная при силе 98,07 Н (10 кгс) и времени выдержки 40 с.

    Общего точного перевода чисел твердости, измеренных алмазной пирамидой (по Виккерсу), на числа твердости по другим шкалам или на прочность при растяжении не существует. Поэтому следует избегать таких переводов, за исключением частных случаев, когда благодаря сравнительным испытаниям имеются основания для перевода.

    &nbsp Метод измерения твердости металлов и сплавов по Роквеллу регламентирует ГОСТ 9013 – 59* (в редакции 1989 г.).

    Сущность метода заключается во внедрении в поверхность образца (или изделия) алмазного конусного (шкалы А. С. D) или стального сферического наконечника (шкалы В. Е. F. G. Н. К) под действием последовательно прилагаемых предварительной и основной сил и в определении глубины внедрения наконечника после снятия основной силы.

    Твердость по Роквеллу обозначают символом HR с указанием шкалы твердости, которому предшествует числовое значение твердости из трех значащих цифр.

    Пример обозначения: 61,5 HRC – твердость по Роквеллу 61,5 единиц по шкале С.

    СРАВНЕНИЕ ЧИСЕЛ ТВЕРДОСТИ МЕТАЛЛОВ И СПЛАВОВ
    ПО РАЗЛИЧНЫМ ШКАЛАМ

    СРАВНИТЕЛЬНАЯ ТАБЛИЦА ТВЕРДОСТИ
    по DIN 50150

    С целью обеспечения единства измерений введен государственный специальный эталон для воспроизведения шкал твердости Роквелла и Супер-Роквелла и передачи их при помощи образцовых средств измерений (рабочих эталонов) рабочим средствам измерений, применяемым в стране (ГОСТ 8.064 – 94).

    ДИАПАЗОНЫ ШКАЛ ТВЕРДОСТИ по РОКВЕЛЛУ и СУПЕР-РОКВЕЛЛУ,
    ВОСПРОИЗВОДИМЫХ ЭТАЛОНОМ по ГОСТ 8.064-94

    Твёрдость – это сопротивление тела внедрению индентора – другого твёрдого тела. Способы испытания твёрдости подразделяются на статические и динамические.

    К статическим относятся способы измерения твёрдости по Бринеллю, Викерсу, Роквеллу, Кнупу; к динамическим – способы измерения твёрдости по Шору, Шварцу, Бауману, Польди, Морину, Граве.

    Измерения твёрдости осуществляют при 20±10°С.

    Измерение твёрдости по Бринеллю

    Бринелля метод [по имени шведского инженера Ю.А.Бринелля (J.A.Brinell)] – способ определения твёрдости материалов вдавливанием в испытываемую поверхность стального закалённого шарика диаметром 2,5; 5 и 10 мм пр нагрузке P от 625 H до 30 кН. Число твёрдости по Бринеллю HB – отношение нагрузки (кгс) к площади (мм2) поверхности отпечатка. Для получения сопоставимых результатов относительной твёрдости материалы (HB свыше 130) испытывают при отношении P_D2=30, материалы средней твёрдости (HB 30-130) – при P_D2=10, мягкие (HB

    Метод измерения твердости металлов по Бринеллю регламентирует ГОСТ 9012-59 «Металлы. Метод измерения твердости по Бринеллю»: Стандарт устанавливает метод измерения твердости по Бринеллю металлов с твердостью не более 650 единиц. Сущность метода заключается во вдавливании шарика (стального или из твердого сплава) в образец (изделие) под действием усилия, приложенного перпендикулярно к поверхности образца, в течение определенного времени, и измерении диаметра отпечатка после снятия усилия. ГОСТ 9012-59, в частности, определяет требования, предъявляемые к отбору образцов металла для измерения твёрдости по Бринеллю – размер образцов, шероховатость поверхности и др.

    Измерение твёрдости по Роквеллу

    Роквелла метод [по имени американского металлурга С.Роквелла (S.Rockwell), разработавшего этод метод] – способ определения (измерения) твёрдости материалов (главным образом металлов) вдавливанием в испытываемую поверхность алмазного индентора с углом при вершине 120° (шкалы А и С) или стального закалённого шарика диаметром 1/16 дюйма или 1,588 мм (шкала B. Твёрдость по Роквеллу выражается в условных единицах. За единицу твёрдости принята величина, соответствующая перемещению индентора на 0,002 мм. Испытание методов Роквелла проводят на специальном настольном приборе, снабжённом индикатором, который показывает число твёрдости. ГОСТ 23677-79.

    Таблица соответствия HB – HRC (Перевод значений твёрдости)

    (соотношение твёрдости по Бриннелю твёрдости по Роквеллу,определяемых методами в соответствии с ГОСТ 8.064-79)

    Твердость по Роквеллу (эталонная)

    Твердость по Роквеллу

    Твердость по Бринеллю

    HRCэ

    HRC

    D=10мм HB

    Р=3000кг диаметр отпечатка в мм

    Купить РТМ 3-1947-91 — бумажный документ с голограммой и синими печатями. подробнее

    Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль».

    Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

    Способы доставки

    • Срочная курьерская доставка (1-3 дня)
    • Курьерская доставка (7 дней)
    • Самовывоз из московского офиса
    • Почта РФ

    Документ содержит соотношения между значениями твердости черных и цветных металлов и их сплавов, измеряемых методами по Бринеллю, Роквеллу, Супер-Роквеллу и Виккерсу.

    Оглавление

    Приложение 1. Поправки к значениям твердости по Супер-Роквеллу по шкале Nдля образцов с выпуклыми и вогнутыми поверхностями

    Приложение 2. Перевод чисел твердости HRCэ шкалы с Роквелла в числа твердости HRC шкалы с Роквелла

    Этот документ находится в:

    • Раздел: Строительство
    • Подраздел: Справочные документы
    • Подраздел: Директивные письма, положения, рекомендации и др.

    Организации:

    28.08.1991 Утвержден Министерство

    Нормативные ссылки

    • ГОСТ 1412-85Чугун с пластинчатым графитом для отливок. Марки
    • ГОСТ 15527-70Сплавы медно-цинковые (латуни), обрабатываемые давлением. Марки. Заменен на ГОСТ 15527-2004.
    • ГОСТ 493-79Бронзы безоловянные литейные. Марки
    • ГОСТ 613-79Бронзы оловянные литейные. Марки
    • ГОСТ 7293-85Чугун с шаровидным графитом для отливок. Марки
    • ГОСТ 4784-74Алюминий и сплавы алюминиевые деформируемые. Марки. Заменен на ГОСТ 4784-97.
    • ГОСТ 1583-89Сплавы алюминиевые литейные. Технические условия

    Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

    РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ

    Конструкторские нормы МЕТАЛЛЫ И СПЛАВЫ Переводные таблицы твердости

    РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ

    Конструкторские нормы РТЫ 3-

    МЕТАДЛЫ И СПЛАШ 1947-91

    Переводные таблицы твердооти

    Дата введения 01.07.92

    Настоящий руководящий технический материал содержит соотношения между значениями твердости черных и цветных металлов и их сплавов, измеряемых методами по Бринеллю, Роквеллу, Супер-Роквеллу и Виккерсу.

    I. Соотношения между значениями твердости и временным сопротивлением разрыву должны соответствовать приведенным в табл.1.

    Значения чисел твердости по Роквеллу приведены для наконечника о алмазным конусом:

    по шкале С(НКСэ) при усилии 1471 Н (150 кгс); по шкале A(HRA) при усилии 588 Н (60 кгс).

    Значения чисел твердости по Роквеллу по шкале В (HRB) приведены для стального шарика диаметром D- 1,588 мм при усилии 981 Н (100 кгс).

    Значение чисел твердости по Супер-Роквеллу приведены для наконечника с алмазным конусом:

    по шкале VI5 (ШЯ5) при нагрузке 147 Н (15 кгс); по шкале V30 (HRA/30) при нагрузке 294 Н (30 кто);

    PTM 3- 1947-91 с. 2

    по шкале N45 (HRW45) при нагрузке 441 Н (45 кго).

    Значения чисел твердости по Бринеллю приведены для шарика диаметром D = 10 мм при усилии 29420 Н (3000 кгс):

    стального – при твердооти металлов менее 450 единиц (НВ); из твердого сплава – при твердости металла более 450 единиц (HBW) и продолжительности выдержки от 10 до 15 с.

    Значение чисел твердооти по Виккероу приведены при нагрузке 294 Н (30 кгс) и времени выдержки от 10 до 15 с.

    Временное сопротивление разрыву Ов ,Н (игс/м* 2 )

    Таблица соответствия шкал твердости /
    Hardness equivalent table

    Это устаревшая версия страницы сайта Lab2u.ru См.также /
    This page is old and not support See also :

    Справочная сравнительная таблица твердости по Виккерсу HV10 Бринелю НВ30 Роквеллу HRB HRC и предел прочности при растяжении N/mm2 85 81 410 270 91 87

    Справочная сравнительная таблица твердости по Виккерсу HV10 Бринелю НВ30 Роквеллу HRB HRC и предел прочности при растяжении N/mm2 85 81 410 270 91 87 490 290 97 92 534 310 100 95 562 320 107 101 602 340 113 107 634 360 118 112 660 380 121 116 674 390 128 122 704 410 132 125 718 420 138 131 741 440 143 136 762 460 147 140 775 470 153 146 797 490 157 149 807 500 163 154 825 520 168 160 845 540 172 163 854 550 178 169 868 570 184 175 880 590 187 178 887 600 193 184 902 620 200 190 915 640 205 195 925 660 208 198 932 670 212 201 937 680 222 211 954 710 225 214 960 720 228 217 964 730 233 222 972 750 236 225 192 760 243 231 210 780 250 238 222 800 255 242 231 820 258 245 237 830 265 252 248 850 272 258 258 870 275 261 264 880 280 266 271 900 287 273 280 920 293 278 288 940 295 280 297 950 302 287 300 970 308 293 308 990 314 299 315 1010 323 307 325 1040 336 319 339 1080 345 328 349 1110 355 338 360 1140 Тверд по Виккерсу HV30 Тверд по Бринелю2 НВ 30 Тверд по HRB Роквеллу31 HRC Предел прочн. при растяж. оВ N mm2 364 346 371 1170 373 355 381 1200 383 364 391 1230 391 372 399 1260 400 380 408 1290 410 390 418 1320 420 399 427 1350 429 408 434 1380 437 415 442 1410 443 421 447 1430 452 430 454 1460 455 457 1470 464 464 1500 473 471 1530 481 478 1560 489 483 1590 500 491 1630 509 497 1660 520 505 1700 528 510 1730 536 514 1760 547 521 1800 556 527 1830 567 534 1870 575 539 1900 586 544 1940 596 550 1980 607 556 2020 615 560 2050 629 567 2100 639 572 2140 650 578 2180 670 580 680 585 690 590 700 595 720 604 740 612 760 620 780 628 800 636 820 643 840 650 860 657 880 663 900 669 920 675 940 680 1) Все значения твердости установленные различными способами на различных материалах можно сравнивать лишь приблизительно; по DIN 50150. 2) Рассчитано исходя из HD 095 xHV. 3) Приводимые до одного знака после запятой значения по Роквеллу служат только для интерполяции и в результате должны округляться до целых чисел. 1658 Основной каталог 46

    Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твер

    Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твердосплавный шарик D10 (мм) HRA HRB HRC HRD 940 85.6 — 68.0 76.9 97 920 85.3 — 67.5 76.5 96 900 85.0 — 67.0 76.1 95 880 — (767) 84.7 — 66.4 75.7 93 860 — (757) 84.4 — 65.9 75.3 92 840 — (745) 84.1 — 65.3 74.8 91 820 — (733) 83.8 — 64.7 74.3 90 800 — (722) 83.4 — 64.0 74.8 88 780 — (710) 83.0 — 63.3 73.3 87 760 — (698) 82.6 — 62.5 72.6 86 740 — (684) 82.2 — 61.8 72.1 84 720 — (670) 81.8 — 61.0 71.5 83 700 — (656) 81.3 — 60.1 70.8 81 690 — (647) 81.1 — 59.7 70.5 — 680 — (638) 80.8 — 59.2 70.1 80 670 — 630 80.6 — 58.8 69.8 — 660 — 620 80.3 — 58.3 69.4 79 650 — 611 80.0 — 57.8 69.0 — 640 — 601 79.8 — 57.3 68.7 77 630 — 591 79.5 — 56.8 68.3 — 620 — 582 79.2 — 56.3 67.9 75 610 — 573 78.9 — 55.7 67.5 — 600 — 564 78.6 — 55.2 67.0 74 590 — 554 78.4 — 54.7 66.7 — 2055 580 — 545 78.0 — 54.1 66.2 72 2020 570 — 535 77.8 — 53.6 65.8 — 1985 560 — 525 77.4 — 53.0 65.4 71 1950 550 (505) 517 77.0 — 52.3 64.8 — 1905 540 (496) 507 76.7 — 51.7 64.4 69 1860 530 (488) 497 76.4 — 51.1 63.9 — 1825 520 (480) 488 76.1 — 50.5 63.5 67 1795 510 (473) 479 75.7 — 49.8 62.9 — 1750 500 (465) 471 75.3 — 49.1 62.2 66 1705 490 (456) 460 74.9 — 48.4 61.6 — 1660 480 488 452 74.5 — 47.7 61.3 64 1620 470 441 442 74.1 — 46.9 60.7 — 1570 460 433 433 73.6 — 46.1 60.1 62 1530 450 425 425 73.3 — 45.3 59.4 — 1495 440 415 415 72.8 — 44.5 58.8 59 1460 430 405 405 72.3 — 43.6 58.2 — 1410 420 397 397 71.8 — 42.7 57.5 57 1370 410 388 388 71.4 — 41.8 56.8 — 1330 100 379 379 70.8 — 40.8 56.0 55 1290 390 369 369 70.3 — 39.8 55.2 — 1240 380 360 360 69.8 (100.0) 38.8 54.4 52 1205 370 350 350 69.2 — 39.9 53.6 — 1170 360 341 341 68.7 (109.0) 36.6 52.8 50 1130 350 331 331 68.1 — 35.5 51.9 — 1095 340 322 322 67.6 (108.0) 34.4 51.1 47 1070 330 313 313 67.0 — 33.3 50.2 — 1035 Виккерс Бринелль НВ Роквелл Шор HS S 5 Э МРа(1) iff га О 5 Твердосплавный шарик D10(mm) HRA HRB HRC HRD 320 303 303 66.4 (107.0) 32.2 49.4 45 1005 310 294 294 65.8 — 31.0 48.4 — 980 300 284 284 65.2 (105.5) 29.8 47.5 42 950 295 280 280 64.8 — 29.2 47.1 — 935 290 275 275 64.5 (104.5) 28.5 46.5 41 915 285 270 270 64.2 — 27.8 46.0 — 905 280 265 265 63.8 (103.5) 27.1 45.3 40 890 275 261 261 63.5 — 26.4 44.9 — 875 270 256 256 63.1 (102.0) 25.6 44.3 38 855 265 252 252 62.7 — 24.8 43.7 — 840 260 247 247 62.4 (101.0) 24.0 43.1 37 825 255 243 243 62.0 — 23.1 42.2 — 805 250 238 238 61.6 99.5 22.2 41.7 36 795 245 233 233 61.2 — 21.3 41.1 — 780 240 228 228 60.7 98.1 20.3 40.3 34 765 230 219 219 — 96.7 (18.0) — 33 730 220 209 209 — 95.0 (15.7) — 32 695 210 200 200 — 93.4 (13.4) — 30 670 200 190 190 — 91.5 (11.0) — 29 635 190 181 181 — 89.5 (8.5) — 28 605 180 171 171 — 87.1 (6.0) — 26 580 170 162 162 — 85.0 (3.0) — 25 545 160 152 152 — 81.7 (0.0) — 24 515 150 143 143 — 78.7 22 490 140 133 133 — 75.0 21 455 130 124 124 — 71.2 20 425 120 114 114 — 66.7 — 390 110 105 105 — 62.3 100 95 95 — 56.2 95 90 90 — 52.0 90 86 86 — 48.0 85 81 81 — 41.0 Примечание параметры указанные в скобках применять только для сравнения. Index Таблица соответствия твердости Таблица соответствия твердости обрабатываемых материалов

    Сравнительная таблица твердости. Перевод твердости по БРИНЕЛЛЮ, РОКВЕЛЛУ, ВИККЕРСУ и ШОРУ.

    Понятие твердости и ее измерение долгое время оставалось довольно спорным вопросом. Очень долго не могли разработать методику, по которой можно было бы определить количество этого параметра. Пока Моос не придумал измерять этот параметр путем пробы поцарапать один минерал другими минералами. Если один из них поддавался царапанию другим, то ему автоматически присваивалось более низкое значение твердости. Приняв за каждую единицу какой-либо эталон, он разработал собственную шкалу твердости с показателями от 1 до 10.

    За 10 баллов отвечала твердость алмаза, эталоном для одного балла твердости стал тальк. Другой распространенный драгоценный камень — корунд, который делится на рубины и сапфиры имеет показатель 9. Таким образом была закреплена такая самая распространенная шкала и соответствующие значения.

    Почему алмаз имеет такой высокий показатель твердости? Как оказалось, химическая структура алмаза представляет собой чистый углерод. Тот же самый углерод, который в нормированном состоянии является графитом и твердость по шкале Мооса которого равняется единице.

    Почему же тогда они имеют такие разные свойства, если состоят из одного и того же атома? Это происходит за счёт химических связей и строения решетки кристалла. Атомы углерода в этих двух веществах по-разному между собой связаны, что дает разное строение структуры.

    Как известно, в природе нет материала, который был бы тверже алмаза. Но недавно учеными было разработано синтетическое вещество, которое, по их заявлению, имеет такой показатель на 58% больше. Это вещество получило название лонсдейлит. Лонсдейлит может выдержать давление, которое на 55 ГПа превышает давление, которое может выдержать самый твердый алмаз. Его использование практически невозможно из-за высокой стоимости. В применении такого материала особой необходимости нет.

    Таблица №1 Для перевода чисел твердости и временного сопротивления разрыву

    (для увеличения масштаба — нажмите на таблицу, изображение откроется в отдельном окне)


    Скачать таблицу в pdf: Таблица №1 Для перевода чисел твердости и временного сопротивления разрыву.
    Перевод чисел твердости и временного сопротивления разрыву σв пригодится специалистам, связанным с термообработкой сталей, цветных металлов и сплавов. Также они могут быть полезны при проведении исследований околошовной сварочной зоны – вы можете проследить, как меняется твердость по мере удаления от шва, на основании чего можно сделать вывод о механических свойствах шва, так как значения твердости можно перевести в σв. В табл. №1 значение σв заканчивается на 690 Нмм2 (70 кгсмм2), что соответствует 21 НRC – редкий сварочный шов имеет такую твердость, разве что после закалки в некоторых случаях она может быть более 21 НRC при условии, что металл имеет достаточное количество углерода, легирующих элементов и структура металла после термообработки – мартенсит. После сварки шов и околошовная зона находится в отпущенном состоянии, если основной металл был предварительно закален. В таком случае его можно исследовать по шкале HRA (cм. табл. №2) или по методу Бринелля.

    Типичные значения твёрдости для различных материалов [ править | править код ]

    Материал Твёрдость
    Мягкое дерево, например сосна 1,6 HBS 10/100
    Твёрдое дерево от 2,6 до 7,0 HBS 10/100
    Полиэтилен низкого давления 4,5 – 5,8 HB [1]
    Полистирол 15 HB [1]
    Алюминий 15 HB
    Медь 35 HB
    Дюраль 70 HB
    Мягкая сталь 120 HB
    Нержавеющая сталь 250 HB
    Стекло 500 HB
    Инструментальная сталь 650—700 HB

    Зачем нужны таблицы твердости?

    Однако вернемся к поставленному вопросу: зачем нужны таблицы твердости?

    Если отвечать кратко, они незаменимы, если используются различные методы измерения твердости. Понять о чем идет речь можно на конкретных примерах.

    Пример: как измерить твердость волнистой пружины из стали 65Г

    Вам нужно измерить твердость волнистой пружины из стали 65Г, но она очень тонкая, менее 0.5 мм толщиной и ее нельзя проверять на обычном аппарате Роквелла при нагрузке 150 кгс или 60 кгс, так как она продавится. Тем не менее, конечные значения нужно получить в HRC. Выйти из положения можно, если использовать аппарат Супер-Роквелл, например, на нагрузке 15 кгс (HR15N), в таком случае вы получите корректные значения твердости, которые сможете перевести в требуемые единицы с помощью таблицы.

    Пример: как определить твердость бериллиевой бронзы БрБ2

    Или следующий пример. Нужно определить твердость бериллиевой бронзы БрБ2, после дисперсионного старения она должна быть не менее 320 HV (по Виккерсу). Вы также можете «уколоть» ее на аппарате Супер-Роквелл, а потом полученные значения, например, в HR15N перевести в HV.

    Числа твердости HRC для некоторых деталей и инструментов

    Детали и инструменты Число твердости HRC
    Головки откидных болтов, гайки шестигранные, рукоятки зажимные 33. 38
    Головки шарнирных винтов, концы и головки установочных винтов, оси шарниров, планки прижимные и съемные, головки винтов с внутренними шестигранными отверстиями, палец поводкового патрона 35. 40
    Шлицы круглых гаек 36. 42
    Зубчатые колеса, шпонки, прихваты, сухари к станочным пазам 40. 45
    Пружинные и стопорные кольца, клинья натяжные 45. 50
    Винты самонарезающие, центры токарные, эксцентрики, опоры грибковые и опорные платики, пальцы установочные, цанги 50. 60
    Гайки установочные, контргайки, сухари к станочным пазам, эксцентрики круговые, кулачки эксцентриковые, фиксаторы делительных устройств, губки сменные к тискам и патронам, зубчатые колеса 56. 60
    Рабочие поверхности калибров – пробок и скоб 56. 64
    Копиры, ролики копирные 58. 63
    Втулки кондукторные, втулки вращающиеся для расточных борштанг 60. 64

    Метод Виккерса

    Метод Виккерса отличается малыми нагрузками и в отличие от других методов, где иногда достаточно грубой зачистки на шлифовальной шкурке или шлифовально-обдирочном станке, требует идеальной подготовки исследуемой поверхности (до зеркального состояния). Твердость определяется по диагонали отпечатка (пирамида), которая также переводится в HV по табл. №1. Виккерс незаменим при исследовании результатов химико-термической обработки. Например, твердость азотированного слоя, если он имеет малую глубину, можно определить только по Виккерсу, Супер-Роквелл в такой ситуации покажет неправильные результаты.

    Применение камня

    Используется показатель твердости алмаза и в промышленности. Не все камни, которые обнаруживают в трубках на месторождениях, пригодны для ювелирной обработки. Большинство материала имеет слишком много дефектов. Такие минералы отправляются на потребности промышленности, где алмаз используется в качестве абразива. Аппаратура, которая имеет покрытие алмазной крошкой, работает дольше и качественнее. Алмаз используется в таких приборах и инструментах, как:

    • оборудование в медицине (скальпели, хирургические инструменты);
    • сверла, фрезы, шлифовальные круги, стеклорезы, ножницы и пилы по металлу, буровые установки;
    • в телекоммуникациях и электронике алмаз используют для прохождения сигналов разных частот по одному кабелю;
    • защитный элемент в химической и физической промышленности;
    • космическая отрасль, где используются даже лонсдейлиты, которые прочнее алмаза.

    Алмаз — вещество, которое имеет уникальные свойства. В том числе и твердость минерала дает возможность использовать его в разных сферах. Применение камня актуально, и его стоимость продолжает расти. А искусственные вещества, которые крепче алмаза, пока недоступны для широкого использования.

    Метод Бринелля

    При определении твердости цветных металлов используют метод Бринелля, который заключается во вдавливании металлического шарика в поверхность детали, последующем измерении диаметра отпечатка и перевода значений в HB (см. табл №2). Для проведения описанной манипуляции нужен специальный аппарат, однако за неимением оного можно использовать все тот же старый добрый Роквелл (индентор «Шарик», нагрузка 100кгс). Таким образом можно контролировать мягкие металлы: алюминий, медь, латунь, бронзу.

    Современные твердомеры имеют продвинутый интерфейс и могут подключаться к компьютеру, переводить значения твердости из одного метода в другой автоматически. Такое оборудование удобное в использовании и не требует высокой квалификации оператора, только вот стоимость его не всегда доступна. К ультразвуковым твердомерам тоже есть претензии по поводу точности измерений. Приходишь к выводу, что лучше проверенное годами старое, чем сомнительное новое по заоблачным ценам. Если вам нужно точно контролировать твердость после термообработки приобретите в термичку Роквелл советского образца, они сделаны очень качественно и их ресурс практически неограничен. Такой Роквелл обеспечит точность и широту измерений. Более дешевый вариант (но безотказный), определение твердости с помощью набора тарированных напильников, хотя это уже совсем другая история.

    Испытания твёрдости по Бринеллю, Роквеллу и Шору

    Твёрдость материала — это одна из его ключевых характеристик. Это понятие включает такие различные параметры как сопротивление к абразивному износу, модуль упругости, сопротивление пластической деформации, предел текучести, хрупкость, предел прочности.

    В прикладном плане под твёрдостью материала понимают его способность сопротивляться нагрузке, вызванной проникновением в него более твёрдого тела. Общий принцип работы измерительных приборов заключается в следующем: индентор (измерительное тело) внедряется в поверхность испытуемого материала в течение строго определённого времени при заданной нагрузке. Определение твёрдости проводится после установления размеров или глубины отпечатка и сравнения этих величин с установленными табличными данными.

    Испытания твёрдости материалов выполняют с помощью стационарных или портативных твёрдомеров различными методами. В зависимости от способа измерения существует несколько типов приборов.

    Методика измерения по Бринеллю

    Приборы этого типа проводят испытания твёрдости металлов следующим образом: в испытуемое изделие вдавливается шарик из закалённой стали на протяжении определённого времени, при этом линейное расстояние от края измеряемого изделия до центра отпечатка должно составлять не менее 2,5 диаметров самого отпечатка. Между центрами рядом расположенных оттисков должно оставаться не менее 4 диаметров.

    Методика измерения по Роквеллу

    Твёрдомер Роквелла проводит испытания на твёрдость путём вдавливания в испытуемое изделие либо алмазного конуса, угол вершины которого составляет 120°, либо закалённого стального шарика диаметром 1,588 мм. Усилие прилагается в два приёма. Линейное расстояние между центрами соседних оттисков должно быть не менее 4 диаметров отпечатков, но не менее 2 мм, при этом расстояние от края образца до центра оттиска должно составлять не менее 2,5 диаметров отпечатка, но не меньше чем 1 мм.

    Твёрдомер Супер–Роквелл

    Данная методика расширяет возможности базовой версии и выполняется аналогичным образом: стандартный алмазный конус или стальной шарик вдавливаются в испытуемое изделие последовательно в два приёма. Измерение твёрдости образца проводится путём вычисления остаточного увеличения глубины вдавливания шарика или наконечника.

    Методика измерения по Шору

    Эти измерительные приборы применяют для испытания твёрдости низкомодульных материалов (полимеров, каучуков и продуктов их вулканизации, пластмасс, эластомеров). Методика позволяет измерять начальную глубину вдавливания, глубину отпечатка после заданного временного интервала или оба эти параметра.

    Твёрдость — это не фундаментальная, а эмпирическая характеристика. Это реакция материалов на определённый испытательный метод. Как правило, величины твёрдости произвольны (нет строго установленных стандартов твёрдости). Эта характеристика материала не имеет определённого числового значения кроме как в тех условиях, в которых проводится испытание твёрдости. Величина воспроизводима только в заданных условиях опыта с указанием типа и формы индентора.

    Таблица перевода и сравнения единиц твердости. Шкала Виккерса, Роквелла, Бринелля