Как отделить медь от железа

Как отделить медь от других цветных металлов

Почему перед сдачей цветных металлов в пункты приема так важно проводить сортировку и химический анализ металлолома? Ответ прост: чтобы грамотно определить состав сплава и рассчитать цену за всю партию. Химический анализ позволяет узнать наименование и марку металла и степень его загрязненности. Именно чистота состава во многом и влияет на стоимость металлолома. Увеличить прибыль от сдачи цветмета позволит самостоятельная сортировка металлов. Как же отделить медь от железа, алюминия или олова? Об этом мы и поговорим в нашей статье.

Итак, черновая медь, которая выплавлена из первичного или вторичного сырья, содержит в себе 0,6-4% примесей. Среди основных компонентов, которые встречаются в составе, следует отметить железо, серебро, никель, золото, сурьму, висмут и т.д. Некоторые из элементов способны ухудшить механические свойства (например, снизить электропроводность или пластичность), другие, наоборот, улучшить. Отделить медь от алюминия или олова можно с помощью огневого и электролитического рафинирования. Данные способы позволяют не только очистить металл, но и извлечь из состава другие ценные элементы. Данные технологии активно применяются в металлургии и промышленности. А как же отделить серебро от меди в домашних условиях? Процедура аффинажа предполагает применение одной из нескольких методик:

  • купелирование;
  • электролитический способ;
  • химический способ.

Для проведения процесса купелирования необходимы специальные печи (необходимая температура 850-900°С), в которые помещаются тигели с серебром и медью. После нагрева и окисления тигель аккуратно достают и разливают содержимое в формы.

Еще одним способом отделить серебро от меди является электролитический. Он предполагает наличие изготовленных из пластика ячеек, содержащих раствор нитрита натрия. Количество драгоценного металла должно быть не менее 50 г на 1 литр жидкости. Анодом в данной реакции будет служить загрязненное серебро, катодом — нержавеющие пластины. Элемент, требующий очистки, необходимо поместить в небольшие мешочки, в которых в результате останутся грязные металлы, не растворившиеся в результате реакции. А на катодах появятся частички чистого серебра.

И, наконец, одним из наиболее популярных способов отделить серебро от меди и прочих металлов является химический. Для процедуры потребуется соляная и азотная кислота. Во время работы следует строго соблюдать технику безопасности: использовать перчатки и респиратор, работать в хорошо проветриваемом помещении. После очищения изделия щелочным раствором его необходимо залить 10% азотной кислотой. В результате после растворения сплава вы получите медь и соли серебра, которые несложно восстановить.

Если вы не знаете, как отделить олово или серебро от меди, железа, алюминия или золота, воспользуйтесь помощью профессионалов. Поскольку отсутствие опыта при проведении данных работ может иметь негативные последствия. Если у вас возникли вопросы относительно приема меди или алюминия, актуальных цен или дополнительных услуг, задайте их специалистам ООО «ЦМЛ».

Медь 600 / 590 /585 руб/ кг
Бронза 330 руб./кг
Латунь 330 руб./кг
Нержавейка 100 руб./кг
Алюминий эл.тех / микс 135 / 85 руб./кг
АКБ б/у сухой АКБ б/у гель 73 / 68 руб./кг
свинец оболочка чистая / грязная 130/119 руб./кг
Кабель медный б/у (по выходу) 570 руб./кг
Кабель алюминиевый б/у (по выходу) 100 руб./кг
Кабель свинцовый б/у (по выходу) 100 руб./кг

ответим на вопросы
и рассчитаем сумму оплаты

Способ удаления меди с поверхности изделий из черных металлов

l, Класс 484-,-5. ) е.е, б,, е

ОПИСАНИЕ способа удаления меди с поверхности изделий из черных металлов.

К авторскому свидетельству И. Я. Богорада и С. А. Лобанова, заявленному 3 июля 1934 года (спр. о перв. № 150346).

О выдаче авторского свидетельства опубликовано 31 августа 1936 года.

В ряде случаев возникает потребность в удалении слоя меди со стальной детали без повреждения основного металла, например, это может иметь место при удалении омеднения с канала ствола орудия после стрельбы, при удалении меди с деталей, подвергнутых частичной цементации, и др.

Применяемые в этих случаях технические способы трудоемки и недостаточно гарантируют целость основного металла, а существующие химические способы требуют применения импортных реактивов.

При изыскании раствора для снятия меди с черных металлов авторы исходили из известного факта, что раствор хромового ангидрида, применяемый для хромирования, растворяет медь, но практически не действует на черные металлы. Однако опыт проведенный с раствором одного только хромового ангидрида, доказал очень малую скорость растворения по сравнению с действием хромового электролита, содержащего обычно 1о о серной кислоты.

Это указало на необходимость присутствия свободной серной кислоты или ее аниона и дальнейшие опыты показали полезность прибавления довольно значительных количеств серной кислоты.

Во избежание возможности разъедания черного металла более рационально прибавлять не свободную серную кисслоту, а какую-нибудь соль, содержащую анион серной кислоты. Воздействие раствора на медь не зависит от того, применена ли свободная серная кислота или ее соль. Повидимому, и в этом случае, как и в процессе хромирования, анион серной кислоты содействует восстановлению хромового ангидрида, а следовательно, окислению меди.

Далее для ускорения процесса растворения меди пробовали добавлять различные вещества, от которых возможно было ожидать образования с растверенной медью комплексных ионов, чем понижается концентрация ионов меди в растворе и облегчается дальнейший переход меди в раствор. Из таких веществ наилучшие результаты дал ион аммония.

При прибавлении к раствору хромового ангидрида водного раствора аммиака последний немедленно превращается в двухромокислый аммоний. Так как опыты показали рациональность прибавления довольно значительных количеств иона аммония, то. связывать хромовый ангидрид аммиаком оказалось невыгодным, ибо, как показали опыты, хроматы значительно медленнее действуют на медь, чем свободный хромовый ангидрид.

Поскольку экспериментально и теоретически были найдены полезными добавки аниона серной кислоты и катиона аммония независимо друг от друга, то

I естественно было ожидать, что совместное присутствие обоих ионов даст аддитивный результат, что и подтвер. лилось на практике.

Таким образом существенным является наличие в растворе хромового ангидрида, с одной стороны, аниона серной кислоты, а с другой †катио аммония.

Наилучшие результаты получаются при одновременном присутствии обоих этих ионов, причем совершенно безразлично, в виде каких соединений они были введены в раствор.

Как один из подходящих рецептов можно привести нижеследующий: хромового ангидрида от 300 до 600 г, сернокислого аммония от 100 до 150 г на 1 литр воды.

Процесс состоит в протирании омедненной поверхности тряпками или п1етками, смоченными раствором хромовой кислоты с добавкой аммонийных и сернокислых солей или в погружении де талей в раствор того же состава.

После удаления меди поверхност промывается водой или щелочным рас твором, вытирается насухо и смазы вается маслом или иным подходящими материалом. От действия раствора по верхность основного металла не стра дает, Предмет изобретения.

1, Способ удаления меди с поверх нбсти изделий из черных металлов отличающийся тем, что указанные изде лия обрабатывают водным растворов хромового ангидрида, к которому при бавлены соли, содержащие анион сер ной кислоты или катион аммония, атакж( содержащие одновременно оба иона.

2. Прием выполнения способа по п. 1 огличающийся тем, что к водному рас твору хромового ангидрида добавляю сернокислый аммоний. 1ип. „Г!ромполиграф». 1амбовския, 12. Зак. 4I47- 2С

Форум химиков

Отделить медь от железа?

Отделить медь от железа?

Сообщение jurik » Пн июн 26, 2006 12:00 pm

Сообщение Лелик » Пн июн 26, 2006 12:12 pm

Сообщение vano » Пн июн 26, 2006 4:18 pm

Сообщение jurik » Пн июн 26, 2006 4:47 pm

Сообщение vano » Пн июн 26, 2006 4:54 pm

Сообщение Лелик » Пн июн 26, 2006 5:08 pm

Сообщение vano » Пн июн 26, 2006 5:42 pm

Медный купорос образуется при растворении меди с анода, нечего ценный реактив тратить если можно в процессе получить.

При низком напряжении медь просто не будет выделяться (то есть верхний предел, 5 вольт, это я так, к примеру написал, можно и по выше, только чтоб не убило)

Плотность тока думаю придется использовать какая получится, заранее ванну тут ведь никто не будет рассчитывать (неизвестна площадь анода и куча других параметров).

Читайте также  Как нарезать резьбу на медной трубке

Сообщение jurik » Вт июн 27, 2006 8:09 am

Сообщение Лелик » Вт июн 27, 2006 8:42 am

vano писал(а): Медный купорос образуется при растворении меди с анода, нечего ценный реактив тратить если можно в процессе получить.

При низком напряжении медь просто не будет выделяться (то есть верхний предел, 5 вольт, это я так, к примеру написал, можно и по выше, только чтоб не убило)

Плотность тока думаю придется использовать какая получится, заранее ванну тут ведь никто не будет рассчитывать (неизвестна площадь анода и куча других параметров).

Получится то же самое что растворять медь химически, только еще и расходы на электроэнергию, так можно вообще просто в кислотах растворить. При низкой концентрации меди в растворе (изначально нулевая) должна быть и низкая катодная плотность тока — соответственно низкая скорость процесса.

В гальванике решающую роль играет ток, а не напряжение, так как от тока зависит скорость процесса, качество получаемого осадка и косвенно — какой из возможных процессов будет протекать. При превышении тока выше предельного образуется не плотный осадок металла, а рыхлый порошок — оно надо?

Расчитать параметры процесса раз плюнуть. Площадь анода роли не играет.

Да и если целью является продать медь, то лучше продать в таком виде в каком есть — прибыль будет больше.

Сообщение vano » Вт июн 27, 2006 12:01 pm

Тут уже неоднократно обсуждалась невысокая доступность концентрированной серной кислоты, а в разбавленной растворять медь крайне неблагодарное занятие. Кроме того, я думаю, что проще потратить электричества на 10 рублей, чем возиться с растворением меди в концентрированной кислоте.
При низкой концентрации меди в кислоте, электропроводность будет обеспечиваться сернягой, а растворяется медь в качестве анода — на ура.

>Площадь анода роли не играет.

Хм, это как? Если площадь маленькая, то придется прикладывать довольно высокое напряжение, чтобы обеспечить большой ток (сопротивление все таки).

>Да и если целью является продать медь, то лучше продать в таком виде в каком есть — прибыль будет больше.

Это вряд ли, медь в таком виде мало кто принимает, другое дело, что нет уверенности в том, что процесс себя окупит. Я бы попробовал все таки что-нибудь на основе высоких температур. Например сделась большую печку на дровах (на даче например), с поддувом от вентилятора, из железной бочки. Она конечно прогорит после пары плавок, но она и стоит копейки.

>В гальванике решающую роль играет ток, а не напряжение, так как от тока зависит скорость процесса

Ток как раз и зависит от напряжения на электродах и сопротивления ячейки. Это в промышленных электролизерах расстояние между электродами можно забацать в 1 см, а в самопальном они будут довольно далеко друг от друга и напряжение придется повышать.

Безопасный общедоступный состав для травления меди в домашних условиях

Многие из нас занимаются травлением плат, пожалуй, с подросткового возраста. Рецепты предыдущих поколений известны и используются десятками лет.

Все известные методы обладают как индивидуальными, так и общими недостатками, усугубляемыми отсутствием собственной оборудованной мастерской, закрытой для доступа любопытных домашних питомцев и родственников. Практически не удаляемые пятна, неприятный запах, общая опасность некоторых используемых реактивов и прочие причины влекут за собой необходимость оправдываться и доказывать очевидную вещь – пользу от занятий радиолюбительством.

Помимо прочего в самый неподходящий момент, так сказать на взлёте деятельной активности, вдруг не оказывается нужных компонентов, или оказалось, что они уже пришли в негодность. Порой, быстро и в доступных точках продаж, найти привычные или, вообще, любые реактивы и вовсе не представляется возможным, что влечёт за собой потери целых дней творчества…

Однако всё в этой жизни меняется… Растём мы, растут и наши запросы, увеличиваются рабочие напряжения и токи. И вот мы уже меняем медь 32 мкм на медь 105 мкм и длительность, и расход реактивов, и качество процесса нас не устраивают.

Для начала, рассмотрим, так сказать классику. Нетерпеливые могут, конечно, пропустить

уже известное и много где упомянутое, и начать с п.5. Но, думаю, краткое изложение по схеме: уравнение реакции, анализ течения с указанием окислительно-восстановительных потенциалов (далее по тексту ОВП), достоинства и недостатки, создадут более полную картину.

Следует заметить, что мы ориентируемся на нормальный ОВП а именно рассчитанный по справочным данным при активности как самого реактива, так и продуктов реакции равной 1 экв./литр.

Итак, с п.1 по п.4 рассматриваем классику:

1. Травление меди раствором хлорного железа.

Рис. 1 1 -стандартная упаковка; 2 — шестиводное хлорное железо; 3 — безводное хлорное железо (растворяется в воде со спецэффектами, но получаемый раствор аналогичен раствору из водного железа); 4- раствор в начале травления; 5 — отработанный раствор хлорного железа; 6 — меднёный гвоздь.

Движущая сила (разность нормальных ОВП потенциалов) для этой реакции составляет:

Это не так уж и мало, но, потенциал и скорость процесса сильно уменьшаются по мере накопления в растворе продуктов реакции, что наверняка было всеми замечено. Поработавший раствор травит медь заметно медленнее, чем свежий.

Некоторые пытаются «оживить» отработанный раствор, осаждая из него медь гвоздями, скрепками и т.п., получая, сначала прозрачный зеленовато-голубоватый раствор, очень медленно превращающийся, при доступе воздуха, в ни к чему непригодную «чёрную жижу», которая, при утилизации, разукрашивает сантехнику в цвета ржавчины. Однако удаление меди из отработанного раствора, совершенно бесполезно, поскольку вместо неё в растворе прибавляется хлорид закисного железа FeCl2, который растворять медь не способен в принципе. Вопрос регенерации ХЖ решило бы добавление соляной кислоты, но если у вас она есть, и работать с ней вы согласны, то вам совершенно не нужно отработанное ХЖ, об этом ниже.

Достоинства:
— умеренная скорость травления меди.
— использование единственного основного компонента, а именно хлорного железа.
— простота изготовления раствора «на глаз», главное, что бы концентрация была достаточной.
— не критична температура окружающей среды.

Недостатки:
— Скорость травления и ОВП раствора заметно снижаются по ходу процесса.
— Большим минусом этого метода можно назвать невысокую доступность хлорного железа для рядового радиолюбителя.
— Относительная дороговизна, порой на рынках заламывают немалую цену за мелкую фасовку.
— Также, немалым минусом являются трудноудаляемые пятна, которые оставляет хлорное железо на всём, с чем только не соприкоснётся. Одежда портится, обычно, необратимо.
— ХЖ заметно летуче, особенно при нагревании, плохо хранится (гидролизуется) при доступе воздуха, склонно вылезать из негерметичной тары, загрязняя собой и продуктами своего гидролиза все окружающие предметы.

2. Травление медным купоросом с солью.

Рис. 2 1 — варианты фасовки; 2 — соль и медный купорос; 3 — раствор бирюзового цвета до травления; 4 — отработанный раствор медного купороса.

Тут ключевую роль играет хлорид натрия (соль), поскольку, медь с медным купоросом практически не реагирует.

Движущая сила для этой реакции получилась немного меньше чем, у раствора хлорного железа — около 0,40 В. Следует заметить, что в процессе травления, на поверхности меди образуется осадок продукта реакции – нерастворимый хлорид меди(I) CuCl. Для успешного проведения травления просто необходим значительный избыток NaCl и подогрев, которые помогают справиться с этой напастью.

Несмотря на то, что отработанный раствор напоминает «чёрную жижу», он поглощает кислород из воздуха, и при подкислении, может быть регенерирован.

Достоинства:
— доступность медного купороса, широко применяемого в сельском хозяйстве, как средство защиты растений.
— в отличие от ХЖ не оставляет таких пятен и разводов. Пятна получаются другого цвета – синие. Но, они легко удаляются уксусом.

Недостатки:
— Медный купорос ядовит.
— В последнее время цена медного купороса бьет рекорды, в отличие от размеров фасовки, которые систематически уменьшаются.
— Требуется подогрев раствора для быстрого протекания реакции.
— Невысокая скорость травления.

3. Травление персульфатами (персульфат аммония или персульфат натрия).

Читайте также  Как очистить медный таз

Рис. 3 1 — упаковка и персульфаты россыпью; 2 — раствор до травленя прозрачен, после травления голубой ибо является раствором медного купороса и сульфата натрия.

Весьма интересная система, поскольку, казалось бы, одно вещество (персульфат чего-нибудь) — на самом деле, в процессе травления, распадается на три: перекись водорода, серную кислоту и не участвующий ни в чем сульфат натрия или аммония. Об этом факте говорит необходимость существенного подогревания раствора персульфата, которое необходимо для его гидролиза.

Движущая сила процесса, казалось бы бьёт рекорд 1,43 В! Вот только, практически, такой потенциал не достигается, поскольку персульфат, даже при нагревании его раствора не гидролизуется мгновенно и полностью.

Достоинства
— Высокий ОВП
— Высокая скорость травления
— Не оставляет грязных пятен
— Однокомпонентный состав

Недостатки
— Доступность заметно ниже чем у ХЖ
— Вместо пятен, склонен отбеливать и делать дырки в ткани.
— Требуется подогрев
— Применяются растворы высоких концентраций, поскольку больше половины массы реактива, в итоге, составляет балластный сульфат.

4. Травление перекисью водорода в соляной кислоте

Рис. 4 1 — 3% раствор перикиси водорода (аптеки); 2 — таблетки гидроперита (помимо медицины используются для отбеливания волос крашеными блондинками); 3 — соляная кислота — отлично портит вещи и раздражает кожу в то же время содержится в желудке ввиде от 0,4 до 0,6% раствора.

Перекись водорода уже присутствует в своей максимальной концентрации, что позволяет достигнуть максимального ОВП в 1,43 В.

В присутствие соляной кислоты или хлоридов реакция растворения меди протекает через образование промежуточного продукта CuCl, который не успевает выпасть в осадок и быстро окисляется далее. Образование этого продукта заметно понижает потенциал окисления меди, что существенно облегчает течение реакции. т.е. хлориды в данной системе являются катализатором.

Достоинства
— Самая высокая скорость травления из всех рассматриваемых.
— Не оставляет грязных пятен
— Процесс быстро протекает при комнатной температуре.
— Высокая доступность: перекись можно купить в аптеке, а вместо соляной кислоты годится подсоленный аккумуляторный электролит.

Недостатки
— Использование сильных кислот неизбежно приводит к дыркам в штанах и последующему разбору полётов.

и вот тут мы подходим к самому интересному:

5. Травление меди перекисью водорода в присутствие лимонной кислоты.

Рис. 5 1 — 20ти грамововая упаковка; 2 — россыпь лимонной кислоты; 3 — 15ти граммовые упаковки.

Анализ двух предыдущих методов (см. п.3 и п.4) привёл меня к выводу, что природа, используемой совместно с перекисью водорода, кислоты имеет малосущественное значение, и будет оказывать влияние только на скорость травления меди. Это значит, что можно использовать любую походящую кислоту, которая не окисляется перекисью водорода, например (роюсь в кухонном шкафчике) лимонную, ну или уксусную – но отставим пока уксус из-за неприятного запаха.

Выбор лимонной кислоты вызван тем, что она: доступна, имеет достаточную силу и не пахнет. Более того, лимонная кислота образует прочнейший комплекс с медью, что исключает всякое влияние продуктов реакции на её скорость! А для ускорения процесса следует добавить не расходующийся хлорид натрия.

Движущая сила процесса, внимание: 1,775 В, что является абсолютным рекордом!

Достоинства
— Весьма высокая скорость травления.
— Не оставляет грязных пятен
— Процесс быстро протекает при комнатной температуре.
— Не требуется труднодоступных реактивов: 3% перекись продаётся в аптеке, лимонная кислота – в гастрономе, а соль можно найти на любой кухне
— Травильный раствор безопасен для тела и одежды
— Это самый дешевый метод травления меди!

Недостатки, куда же без них.
— Средний цитрат меди малорастворим и может выпасть в осадок в т.ч. на поверхность травления. Для предотвращения возникновения проблемы не следует экономить лимонную кислоту.

Рекомендуемый способ приготовления травильного раствора:

В 100 мл аптечной 3% перекиси водорода растворяется 30 г лимонной кислоты и 5 г поваренной соли. Этого раствора должно хватить для травления 100 см2 меди, толщиной 35мкм.

Соль при подготовке раствора можно не жалеть. Так как она играет роль катализатора, то в процессе травления практически не расходуется. Перекись 3% не стоит разбавлять дополнительно т.к. при добавлении остальных ингредиентов её концентрация снижается.

Чем больше будет добавлено перекиси водорода (гидроперита) тем быстрее пойдёт процесс, но не переусердствуйте — раствор не хранится, т.е. повторно не используется, а значит и гидроперит будет просто перерасходован. Избыток перекиси легко определить по обильному «пузырению» во время травления.

Однако добавление лимонной кислоты и перекиси вполне допустимо, но рациональнее приготовить свежий раствор.

Вы можете использовать вместо лимонной и уксусную кислоту, но неприятный запах и меньшая скорость травления могут вас не устроить. ОВП реакции с уксусной кислотой 1,35В – что в принципе не так уж и мало, например в сравнении с ХЖ.

Напомню для тех кто только начинает:

— Для приготовления всех травильных растворов необходимо использовать пластиковую либо стеклянную посуду.
— Подогрев растворов следует проводить на водяной бане или специально предназначенными приспособлениями.
— Все растворы полученные после травления ядовиты из-за высокого содержания меди.
— Соблюдайте технику безопасности при работе с сильными кислотами.
— Утилизация отработанных растворов допустима путём выливания в общую канализацию.
— После травления плату следует ополоснуть слабым раствором уксуса и тёплой водой.

Как снять серебро с контактов: различные способы получения драгоценного металла

За последние десятилетия бурное развитие электронной промышленности привело к уменьшению использования драгоценных металлов в производстве комплектующих деталей и полупроводников.

Тем не менее, во времена существования СССР драгметаллы были одним из основных и крайне важных компонентов выпускаемой радиоэлектроники.

Существует специализированный справочник содержания драгметаллов, по которому можно узнать перечень драгоценных элементов, входящих в состав того или иного компонента электроники.

Наиболее часто встречающимся благородным металлом в радиодеталях является техническое серебро. Оно представляет собой чистый металл с незначительными примесями либо без примесей вообще.

Таким образом, техническое серебро – это практически всегда высокопробный металл 999 пробы. В этой статье мы расскажем, где оно содержится, и как снять этот металл с контактов и отделить его от меди в домашних условиях.

Где содержится данный драгметалл?

Для драгоценных элементов в электронике важную роль играют такие свойства, как тепло- и электропроводность, а также светоотражение.

Таким образом, благородные металлы используются в следующих радиокомпонентах:

  1. Микросхемы. Наиболее перспективными вариантами для добычи металлов являются микросхемы советского производства. Предпочтительнее проводить разборку микросхем серий 564, 530, 133, 134, 142, 155 и 1533.
  2. Конденсаторы. Помимо серебра здесь также могут встречаться палладий, платина и золото. Объем тех или иных металлов зависит от типа корпуса (керамический, желтый, серебряный и танталовый), а также от года выпуска устройств. Данные компоненты использовались в различных вычислительных машинах, электронных устройствах и автоматических телефонных станциях, а также в ламповых телевизорах и магнитофонах.
  3. Резисторы. Основу данных радиоэлектронных элементов составляет серебро. Наиболее рентабельными компонентами являются резисторы серий ПТП, ППБЛ, ППМЛ и 5К. Рекомендуется собирать советские резисторы, выпущенные до 1982 года. Ключевым отличием данного компонента является маркировка в виде пометки «ромб».
  4. Разъемы. Для извлечения серебра, технического золота и других драгметаллов подойдут эти устройства как советского, так и иностранного производства. Однако содержание драгоценных металлов в компонентах зарубежного производства будет примерно в пять раз ниже.
  5. Транзисторы. Еще один компонент электроники, содержащий в себе относительно большое количество благородных элементов. Наиболее предпочтительными для добычи серебра являются транзисторы с индексом 2Т935А, 2Т944А, 2Т945А и 2Т998А.

Помимо вышеперечисленных радиоэлектронных компонентов, техническое серебро может содержаться в:

  • генераторных лампах;
  • светодиодах;
  • переключателях;
  • кнопках.

Как получить серебро из радиодеталей в домашних условиях?

Серебро — высокоинертный металл, а значит, данный элемент обладает слабыми реакционно-химическими свойствами. Другими словами, его не так-то просто растворить.

При обычных условиях серебро не растворяется в соляной и серной кислотах, а также в царской водке, как золото.

Тем не менее, у данного металла хорошая растворимость в кислородосодержащей азотной кислоте.

Ответы на вопросы, как выделить, выплавить или по-другому извлечь техническое серебро из радиодеталей, сводятся к трём основным способам:

  1. Механическая обработка — самый простой способ, подходящий для некоторых типов контактов, которые с легкостью отделяются при помощи плоскогубцев и кусачек.
  2. Тепловая обработка — в случае, когда извлечь серебро механическим путем не представляется возможным, есть вариант прибегнуть к использованию газовой паяльной лампой. При высоком нагреве серебряные элементы с легкостью отделяются от держателя с помощью подручных средств.
  3. Обработка азотной кислотой — данный способ используется при извлечении драгметалла из массивных частей радиоэлектронных деталей. Метод требует высокой внимательности и аккуратности на каждом этапе обработки.
Читайте также  Как отполировать медь

Тепловая обработка

Выплавка подойдет для извлечения драгметалла из серебряных контактов, где серебро припаяно на контактный держатель.

В качестве инструментов необходимо использовать газовую горелку или резак, а также нож с деревянной рукояткой.

Принцип действия заключается в нагревании серебряного контакта и последующем его снятии при помощи лезвия ножа.

При достаточной температуре контакты с легкостью извлекаются из держателя.

Обработка азотной кислотой

Данный метод применяется при извлечении серебра с массивных частей радиоэлектронных деталей, например, контактов пускателей или автоматов.

Для обработки понадобятся:

  • кварцевая палочка;
  • стеклянная емкость;
  • 8% раствор азотной кислоты;
  • медь.

При работе с любыми кислотами необходимо соблюдать следующие правила:

  • важно обеспечить постоянную вентиляцию, оптимальный вариант – проводить работы на свежем воздухе;
  • глаза нужно защитить специальными очками, а кожу рук – резиновыми перчатками;
  • нужно лить кислоту в воду, а не наоборот.

Для начала необходимо разбавить азотную кислоту путем смешивания деионизированной воды и кислоты в пропорции 1:1.

Полученную жидкость необходимо перемешать кварцевой палочкой. Количество разбавленной кислоты нужно учитывать, исходя из расчета 50 граммов серебра на 1 литр жидкости.

После чего, растворяем серебро в смешанной с водой кислоте. Процесс растворения достаточно длительный и займет от 8 до 10 часов.

Когда процесс растворения серебра завершится, необходимо получить как раз металлический так называемый «серебряный цемент».

Делается это при помощи добавления в раствор меди.

Благодаря добавлению меди реакция вытеснения серебра ускорится, и на медной поверхности будет образовываться серебряный цемент.

Чтобы скорость реакции не уменьшалась, необходимо периодически стряхивать цемент с трубочек.

О завершении процесса будет свидетельствовать остывший раствор без признаков реакции вытеснения, а также наличие чистой жидкости сверху и слоя серебряного цемента внизу. Следующий этап заключается в отделении элементов с помощью фильтрации полученного цемента. Для этого понадобятся воронка, емкость и кофейные фильтры.

Для удаления остатков нитрата меди из порошка процедуру фильтрации необходимо провести несколько раз.

Полученную отфильтрованную жидкость необходимо выпарить и в сухом виде сплавить газовой горелкой или резаком.

Реализация полученного металлического сырья и его средняя цена за грамм

Для последующего сбыта драгметалла с контактов нужно знать его полученную массу и пробу. Как уже говорилось ранее, техническое серебро, применяемое в радиоэлектронике – это чистый металл 999 пробы.

Соответственно металл, полученный механическим путем или выплавкой, будет 999 пробы. Если серебро извлекалось химическим методом с помощью азотной кислоты, то на выходе будет получаться металл приблизительно 980 пробы. Это обусловлено присутствующими в серебре примесями меди.

Непосредственно стоимость будет зависеть от двух основных факторов:

  • процентного содержания чистого серебра в полученном сплаве;
  • места продажи драгметалла.

На 2018 год цена за 1 грамм лома технического серебра сложилась следующим образом:

  • проба 999– от 24 до 35 рублей;
  • 980 – от 21 до 27 рублей;
  • 960 – от 16 до 22 рублей;
  • 925 – от 9 до 11 рублей.

При продаже более 1 кг благородного металла можно выручить на 2-4 рубля больше за каждый его грамм.

Также наиболее вероятно, что в сети с помощью тематических сайтов и форумов можно найти покупателей, готовых предложить более высокую цену за тех. серебро из контактов, нежели в ломбарде.

Видео по теме

На данном видео показан процесс отделения технического серебра от различных металлических деталей посредством тепловой обработки:

Заключение

Техническое серебро является наиболее часто используемым драгоценным металлом в различных радиоэлектронных компонентах. При определенных навыках его извлечение представляет собой достаточно простое занятие, которое может принести дополнительный доход.

Пожалуй, единственной сложностью остается вопрос, как добыть разнообразные подходящие радиодетали и компоненты. Тем не менее, данное занятие по праву может считаться рентабельным и увлекательным.

Теперь вы знаете, где содержится, как отделить и отпаять контактное тех. серебро, какой пробы получается металл и сколько он стоит.

Способы очистки кабеля для сдачи на лом

Цветной лом кабелей б/у – востребованное и дорогое вторсырье. Его можно извлечь самостоятельно из старой силовой, оптоволоконной, телефонной, монтажной, другой проводки. Какие инструменты и приспособления понадобятся для снятия обмотки? Как быстро очистить кабель для сдачи лома, затратив минимум времени и усилий?

Популярные методы зачистки изоляции

При сдаче кабеля ценность представляет металлическая сердцевина проводников. Прежде чем отправиться на пункт приема нужно зачистить кабель от изоляционной обмотки. Существует несколько способов сделать это своими руками:

  • ручная зачистка ножом, молотком – трудоемкий и долгий процесс, подходит, если партия лома небольшая;
  • обжиг и оплавление – процесс быстрый, но вредный для экологии, не рекомендуется для тонкожильного лома, металл выгорает вместе с обмоткой;
  • использование спецоборудования – самый быстрый и безопасный метод, в ходе работы используют инструмент.

Зачистка ножом, молотком

Для зачищения проводов подходит строительный, канцелярский нож или съемники с крючками, регулировочными винтами, прочее. При работе аккуратно разрезают обмотку вдоль жилы, затем ее отводят в сторону и обрезают.

При работе молотком им с усилием бьют по кабелю до тех пор, пока изоляция не отделится от металла.

Обжиг и оплавление

Обжигать сырье можно на костре, но способ оправдывает себя для большого объема сырья. Выполняют работу на открытом воздухе, соблюдая технику безопасности.

Оплавление кабеля паяльником – один из способов снять изоляцию с тонких, толстых жил, шлейфов. Перед работой провод укладывают на ровную горизонтальную поверхность. Затем разогревают паяльник и прикладывают вертикально к обмотке. По мере оплавления изоляции кабель поворачивают вокруг оси. После обжига пластик легко снимается плоскогубцами, пинцетом, пассатижами.

Важно! Работают в хорошо проветриваемом помещении. При оплавлении изоляции выделяются токсины, и стоит сильный запах пластика.

Использование бокореза и стиппера

Как быстро очистить кабель для сдачи лома и механизировать процесс? Помогут специнструменты:

  • бокорез;
  • стриппер.

Бокорезом называют кусачки или щипчики для перекусывания проводки. Орудуя им, свободный конец провода зажимают между лезвиями, затем аккуратно поворачивают и тянут. Изоляция легко снимается.

Обратить внимание! Режущие кромки направляют в сторону движения инструмента, чтобы лезвия врезались в обмотку без особых усилий. Если неправильно обращаться с бокорезом, кабель будет обламываться вместе с изоляцией.

Автоматизировать процесс очистки кабеля поможет стриппер. Существуют разные подвиды инструмента. Различаются модели количеством дополнительных функций.

Стиппер и работа с ним

Принцип работы всех стрипперов одинаковый:

  • конец кабеля вставляют в отверстие инструмента;
  • рукой зажимают ручки стриппера, чтобы перекусить обмотки;
  • затем проводник вытягивают наружу, освобождая от изоляции.

Важно! Инструмент хорош тем, что прост и понятен в работе, стоит недорого. Он редко повреждает кабель, сокращает время удаления обмотки, подходит для работы с одножильными многожильными проводниками.

Спецоборудование

Если лома много, упростить подготовку сырья поможет спецоборудование для снятия изоляции. Его можно арендовать непосредственно в централизованном пункте приема.

Пункты приема вторсырья

Приемщики лома покупают следующие отходы кабельно-проводниковой продукции:

a) заводской брак, складские неликвиды;

b) б/у кабельные линии, остатки производства;

c) старый неочищенный кабель;

d) демонтированные коммуникации;

e) отходы монтажных работ.

Приемка осуществляется по нескольким критериям, из которых складывается цена за кг лома. Учитывают длину кусков проводника, процентное соотношение лома к изоляции, посторонним примесям.

Сдавать вторсырье рекомендуется в пункты приема, имеющие документы и разрешения на ведение такого рода деятельности. Перед взвешиванием лом осматривают, и оценивает специалисты.

Кстати! Чтобы определить вес металла без обмотки специалист приемки срезает опытный образец проводника, зачищает и взвешивает.