Станок для изготовления болтов и гаек

Станок для изготовления болтов

  • 1
  • 2
  • 3
  • 4
  • 5

Данная работа посвящена станку для изготовления болтов, в работе нужно будет проанализировать различные параметры, которые в дальнейшем дадут представление какой должен быть станок для изготовления болтов.

Технико-экономические показатели станка.

С точки зрения энергоемкости, станки для изготовления болтов могут быть как малоэнергозатратные (токарные, резьбонакатные), так и многоэнергозатратные, например, станки с ЧПУ и холодновысадочной станции для производства болтов.

Автоматизация в сфере изготовления болтов, гаек, шпилек и тому подобное, в настоящее время, не останавливается. Все начиналось с изготовления всех этих изделий с настольного токарного станка, резьбонакатного станка, затем технологии модернизировались и на смену им приходили: холодновысадочные станции для производства болтов, холодные объёмные штамповки, и, в настоящее время, на смену предшественникам приходят станки с числовым программным управлением. Они являются более продуктивными, так как имеют большой магазин инструментов и большую номенклатуру изготавливаемых изделий. Также станки с ЧПУ имеют наиболее высокую точность и они менее ресурсозатраны.

При выборе технологических параметров станка нужно учитывать объём изготавливаемых изделии в год, также их точность и материал, из которых будут изготавливаться изделия, в зависимости от размера и партии можно примерно представить какой брать станок. Если же партия не большая и изделия не очень габаритные, можно выбрать, например, токарный настольный станок либо резьбонакатный, но если партия большая следует рассматривать холодновысадочные станции для производства болтов или же варианты холодной объёмной штамповки. Ели изделия очень массивны, то следует уже рассматривать станки с ЧПУ либо универсальные станки.

Станки данной группы подходят для изготовления:

Нарезания резьбы на различных цилиндрических поверхностях

В качестве заготовки для изготовления болтов чаще всего используют шестигранные прутки, но если же болт является закладным, то его заготовкой может выступать и обычный цилиндрический пруток.

Выбор технических характеристик станка

Геометрическими параметрами рабочего станка являются его габаритные размеры, степень точности, производительность, степень автоматизации.

К слову о точности, исходя из сферы применения детали мы уже определяем какой квалитет ближе к нашим требованиям. Если речь идет об обычном промышленном назначении, то болты можно спокойно исполнить на токарном автомате настольного типа. Если же назначение изделия нужно будет в сфере ракетостроения или в авиастроении и т.п., то болты следует исполнять на станках с ЧПУ, где всё исполняет машина и риск человеческой ошибки становится значительно меньше.

Компоновка станка

В качестве примера для изготовления болтов стоит взять токарные и токарно-винторезные станки, так как на них можно изготавливать как малые так и большие изделия.
В данных станках есть: станина, шпиндельная бабка, а также направляющие: широко-винтовая пара, резцедержатель и задняя бабка в которой располагается пиноль.

Компоновка станка во многом играет роль на его производительности, но также чем станок более модифицирован, тем больше его станко час. Так, например токарно-револьверный станок может располагать в себе более четырех резцов, и тем самым выполнять больше операций без траты на время переналадки, чем он и повышает свою стоимость в отличии от обычного, универсально токарного станка.

Конструктивная компоновка токарного станка выглядит так:

— станина, на которой располагаются все рабочие органы станка;

— шпиндельная бабка, в которой размещены сам шпиндель, коробка скоростей, а также другие элементы;

— коробка подач, передающая движение от шпинделя к суппорту с помощью ходового винта либо ходового валика, в зависимости от операции;

— фартук, в нем преобразуется вещательное движение винта или валика от коробки подач в поступательное движение суппорта с инструментами;

— в пиноли задней бабки может располагаться центр для удержания цилиндрических длинных деталей или стержневых инструментов (например, сверло, зенкер, развертка и т.д);

— суппорт, предназначен для удержания инструмента (резцов). В данной модели он может удерживать до 4 инструментов.

Структурой компоновки служит, как уже ранее оговаривалось, степень точности изготавливаемых болтов, их количество и служебное назначение.

Привода главного движения в станке

Привод главного движения в станке берет свое начало с электродвигателя, затем через ремень поступает на коробку скоростей, где через различные шестерёнки с помощью электромагнитных муфт, шпинделю сообщается та или иная скорость. Пример структурной сетки скоростей представлен ниже.

Рисунок 1 «Структурная сетка скоростей»

В данных моделях за счет электромагнитных муфт возможно переключение скоростей без остановки шпинделя, что делает его практичнее и более эффективным.

Направляющие станка

Основными критериями направляющих станков являются их жесткость, виброустойчивость, долгий срок службы.

Направляющие подразделяются на:

1. Направляющие качения

1.1. Роликовые направляющие модульного типа.

Их главные три приемущества простой монтаж, легкое выдвижение и низкая цена. Но также у них есть существенные недостатки: при открытии они слишком шумят и главным недостатком является то что они выдерживают очень малые нагрузки.

1.2. Шариковые направляющие модульного типа.

Плюсами данных направляющих служат: возможность выдерживать значительную нагрузку, почти в 2 раза превышающую долю роликовых систем, плавность движения. Также плюсом является их бесшумность, и, следует отметить, длительный срок службы и надежность таких направляющих. Главным недостатком является их высокая стоимость.

2. Направляющие скольжения

2.1. Гидростатические направляющие.

Данные направляющие широко распространены в металлорежущей промышленности. Они обладают высокой чувствительностью к точным исполнительным движениям, а также равномерность при любых скоростях скольжения.
Из недостатков, следует отметить, сложность конструкции таких направляющих, дополнительные устройства для остановки в заданной позиции, их не «экологичность».
Данные направляющие так же делятся на открытые и замкнутые.

2.2. Гидродинамические направляющие.

Более приспособлены к быстрым скоростям, но для стабильной и нужной работы они нуждаются в постоянной достаточной скорости перемещения. Для них нужно создание гидродинамического эффекта.

2.3. Аэростатические направляющие.

Данные направляющие имеют большое преимущество в том случае что они меня грязны и более «экологичны», также имеют более высокую степень позиционирования. Их существенным недостатком является постоянное наличие достаточного давления воздуха в системе.

2.4. Аэродинамические направляющие

Также направляющие бывают различного сечения:

В зависимости от воздействия сил, направляющие выбираются той или иной формой.

Шпиндельные узлы станка

Конструкция шпиндельного узла состоит из самого шпинделя, шестеренок, валов, опорных подшипников, шлицевых валов, по которым осуществляется переключение скоростей, ременной передачи, которая принимает крутящий момент от электродвигателя.

Основными требованиями к шпинделям станков является:

Точное вращение, которое определяет торцевое, радиальное и осевое биение переднего конца шпинделя.

Жесткость, способность выдерживать упругие деформации шпинделя при действии на него сил в ходе обработке.

Износостойкость, трущихся поверхностей, например, на расточных и сверлильных станках.
Для изготовления шпинделя используют более твердые и прочные сплавы (40Х), а также используют легированные стали: хроманилигированые (40Х10, с азотированием 35ХМЮА), марганцовистые (50Г2).

В шпинделях используют несколько видов подшипников:

гидростатические шпиндельные подшипники,

Приводы подач станка

В токарно — винторезном станке модели 16К20 коробка подач напрямую связана с коробкой скоростей, так как при нарезании резьбы нужно согласованное движение резца со шпинделем.
Подача влияет на характер обработки детали так же, как и скорость.

В зависимости от увеличения или уменьшения глубины скорости и величины подачи можно получать поверхности с различными шероховатостями. В настоящее время существуют станки с разделёнными коробками скоростей и подач в них, для синхронного движения шпинделя и суппорта используются различные датчики. Такие станки уже имеют не один электродвигатель, который сообщает движение всей системе, а 2 и более.

Читайте также  Аппарат для изготовления гвоздей

Так же коробка подач, кроме рабочей подачи может осуществлять, за счет различного включения шестеренок, быстрое перемещение по осям.

Несущая система

В зависимости от назначения несущие системы подразделяться на:

Вертикальные (сверлильные, фрезерные, шлифовальные);

Горизонтальные (токарные, заточные, расточные).

Несущей системой токарно-винторезного станка является его станина. Станина чаще всего выполняется с чугуна, так как она должна обладать рядом отличительных особенностей, таких как:
Устойчивость является мощной опорой для всех органов станка (не деформироваться под их весом и крепко стоять на полу), что обеспечивается бетонной подушкой под станком и привинчиванием его к ней. В том числе гашение вибраций.

Прочность.

Достижением прочности является выполнение станины с твердых сплавов.
Эффективны в использовании ( иметь свободный отвод стружки, удобное расположение органов станка, подачи смазочно — охлаждающей жидкости, небольшие габариты, защитные средства (кожух), достаточность освещения).

Типичные представители

Типичными представителями можно выделить:

Токарно-винторезный станок модели 16К20. Подходит для изготовления более крупных болтов размерами 50 мм, при проходе заготовки через шпиндельную бабку и с наибольшим зажимным диаметром 170 мм.

Настольный станок Т-65. Удобен своими малыми габаритами. Если в производстве будут участвовать болты небольших размеров, то данный станок будет более подходящим. так как он имеет малые габариты. Также из-за своего небольшого двигателя он потребляет небольшое количество энергии.

Заключение

В данной работе выбирался станок для изготовления болтов. В ходе работы были проанализированы параметры станков, компоновка станка, технико-экономические параметры, части станка, такие как станина, шпиндельный узел, коробка скоростей, коробка подач и т.д. В последствие подобрано 2 станка представителя в качестве примера.

Оборудование для производства метизов: виды станков и параметры выбора

Крепежная продукция различного назначения всегда будет востребована как в строительном бизнесе, так и для частного использования. Широкая область применения дает возможность развивать многочисленные рынки сбыта. Но прежде всего необходимо приобрести оборудование для производства метизов. От его технических параметров будет зависеть ассортимент продукции, ее качество и объемы выпуска.

Выбор продукции

Производство метизов в России имеет долгую историю. Первые заводы появились еще при Петре I на Урале. В настоящее время есть ряд крупных предприятий, выпускающих эту продукцию в больших объемах. Но даже их мощностей не хватает для насыщения рынка.

Группа метизов включает в себя довольно большой ассортимент продукции. К ним относятся крепежные элементы различной конфигурации (гвозди, шурупы, саморезы, гайки, шпильки и т. д.) и товары промышленного применения (канаты, скобы). Для производства с небольшим объемом желательно на первом этапе сделать минимальный перечень выпускаемой продукции. Затем, уже после появления свободных денежных средств, можно думать о расширении и закупке новых станков.

Лучше всего, если перечень продукции будет универсальным, т. е. будет характеризоваться постоянным спросом у частных покупателей и организаций. Чаще всего в него входят такие группы товаров:

  • Крепежные материалы – саморезы, шурупы, гвозди, винты, заклепки.
  • Прокладочные изделия – шайбы, скобы.

Выбрав оптимальный перечень будущих товаров, можно приступать к анализу рынка станков для их производства.

Правила подбора оборудования

При подборе станков необходимо учитывать их производительность, трудоемкость процессов изготовления и эксплуатационные характеристики. Помимо этого, прямое влияние на параметры оборудования оказывает исходный материал. В подавляющем большинстве случаев станки для производства метизов рассчитаны на переработку стального проката, изготовленного из металла различных сплавов.

Для минимальной комплектации линии потребуются следующие типы оборудования:

  • Размоточный станок. Предназначен для порезки проволоки на заготовки.
  • Холодновысадочный станок. С его помощью методом проката получают нужную форму изделия.
  • Резьбонакатное оборудование. Необходимо для нанесения резьбовых линий на поверхность обрабатываемого материала.

Затем метизная продукция проходит стадию закаливания, после чего фасуется и отправляется на склад готовой продукции.

Холодновысадочный пресс

Оборудование для производства метизов обязательно должно включать в себя станок по калибровке проволоки. Диаметр заготовок может варьироваться от 2 до 8 мм.

Принцип работы станка заключается в комплексной обработке проволоки. После подачи холодного проката ей придается нужная форма. Возможность изготовления метизов различной формы обеспечивают съемные насадки для прессов. Они легко заменяются другими моделями, что дает возможность организовать бесперебойный выпуск изделий практически любой конфигурации.

При выборе следует обратить внимание на производительность оборудования, его технические характеристики – потребление электроэнергии, количество обслуживающего персонала.

Резьбонакатный станок

Далее изделие поступает на резьбонакатный станок. Это оборудование для производства метизов формирует методом холодной накатки резьбу на поверхности материала. В зависимости от настроек она имеет различный шаг нанесения, глубину и расположение на заготовке.

Одновременно с этим процессом происходит дополнительное упрочнение метиза. Механическое давление на поверхность укрепляет его структуру, улучшая эксплуатационные свойства. Для некоторых типов изделий необходима дополнительная термообработка – закалка. Сначала их поверхность нагревается до определенной температуры, а затем охлаждается в холодном масляном растворе. В результате этого повышается прочность метиза, но вместе с тем и увеличивается его хрупкость.

Токарно-фрезеровочный станок

Для изготовления некоторых типов изделий необходима более глубокая степень обработки, чем накатка резьбы. Для этих целей применяется специальное оборудование для производства метизов с фрезеровочными элементами.

Оно характеризуется количеством выполняемых операций, скоростью их проведения и возможностью модификации для изготовления различных типов изделий. Для оптимизации процесса производства применяется метод многоосевой обработки. Он заключается в одновременном воздействии нескольких типов фрез на поверхность изделия. В результате значительно возрастает эффективность всей линии.

Цена оборудования для производства метизов зависит от его функциональности. А также от эффективности. Например, холодновысадочный пресс с максимальным объемом выпуска продукции до 160 единиц/мин будет стоить от 560 тыс. руб. Затраты на приобретение полностью укомплектованной линии могут составить около 3,5 млн руб.

В настоящее время есть несколько крупных производителей подобного оборудования. Но это не значит, что все типы станков необходимо закупать только у одного поставщика. Главным показателем любого элемента производства является его рентабельность и оптимальные режимы работы.

Продаю оборудование для производства болтов и гаек

Продам оборудование для производства болтов и гаек — здесь содержится большое количество предложений о продаже различного оборудования для производства болтов и гаек как отечественного так и импортного производства.

Продам оборудование для производства болтов и гаек

ООО»ТЕМП» — Таганрог, Россия

Состояние: б.у.

Доставка: по России

Дата: 2020-04-21

Барнаул, Россия

Страна-производитель: Беларусь

Состояние: б.у.

Доставка: по договоренности

Дата: 2019-09-18

ООО «Темп» — Таганрог, Россия

Состояние: б.у.

Доставка: по России

Дата: 2019-07-03

ООО»ТЕМП» — Таганрог, Россия

Страна-производитель: Россия

Состояние: б.у.

Год выпуска: 1991 г.в.

Доставка: по России

Дата: 2018-09-26

Кипень, Россия

Состояние: б.у.

Год выпуска: 2014 г.в.

Доставка: по договоренности

Дата: 2018-09-19

ООО «ПромКрепёж» — Россия

Состояние: б.у.

Год выпуска: 1986

Доставка: самовывоз

Дата: 2018-08-08

Россия

Состояние: б.у.

Доставка: самовывоз

Дата: 2018-05-21

Тольятти, Россия

Состояние: б.у.

Доставка: по договоренности

Дата: 2018-02-14

ООО «Титан» — Ярославль, Россия

Состояние: б.у.

Доставка: самовывоз

Дата: 2018-01-31

Россия

Состояние: новый

Доставка: самовывоз

Дата: 2017-11-27

ООО АлтайЛитМаш — Барнаул, Россия

Состояние: б.у.

Доставка: по договоренности

Дата: 2017-04-24

Москва, Россия

Состояние: б.у.

Доставка: по договоренности

Дата: 2017-04-18

Одесса, Украина

Состояние: новый

Доставка: По договоренности

Дата: 2017-01-28

ИП Метизный Дом — Липетск, Россия

Состояние: новый

Доставка: По договоренности

Дата: 2016-12-22

Одесский завод по выпуску кузнечно-прессовых автоматов — Одесса, Украина

Компания-производитель: Одесский завод по выпуску кузнечно-прессового оборудования

Страна-производитель: Украина

Состояние: новый

Доставка: По договоренности

Дата: 2016-12-21

ZHONGYU — Харбин, Китай

Состояние: новый

Доставка: По договоренности

Дата: 2016-12-15

Фар Ист Транс — Хабаровск, Россия

Состояние: новый

Доставка: По договоренности

Дата: 2016-12-15

Ройал Рич Корпорэйшн Лимитед — Владивосток, Россия

Состояние: новый

Доставка: По договоренности

Дата: 2016-12-14

Киев, Украина

Состояние: новый

Доставка: По договоренности

Дата: 2016-12-14

Киев, Украина

Состояние: новый

Доставка: По договоренности

Дата: 2016-12-13

СЛИСАРУК, СПД — Киев, Украина

Состояние: новый

Доставка: По договоренности

Дата: 2016-12-12

ООО «Промтехэкспо» — Смоленск, Россия

Состояние: новый

Доставка: По договоренности

Дата: 2016-12-11

Предприятие «Упаковочное дело» — Ростов-на-Дону, Россия

Изготовление болтов: технологии, марки стали, техпроцесс

Болты относятся к наиболее распространенным крепежным элементам. Они представлены стержнями с резьбой на поверхности и головками. Применяются для соединения путем совмещения с резьбовыми отверстиями вроде гаек и прочими. Изготовление болтов осуществляют по технологиям, рассмотренным далее.

Их дифференцируют на два типа. Простейшим вариантом является изготовление на токарном станке, используемое в различных мастерских. В промышленном производстве болтов колес и т. д. применяют штампование, дифференцируемое на два типа.

Изготовление на токарно-винторезном станке

Данная технология, называемая также точением, является наиболее простой для изготовления болтов. Ей осуществляют выпуск штучно либо мелкими партиями. Заготовки в данном случае представлены металлическими прутками, как правило, шестигранного сечения.

Методика изготовления болта на токарном станке включает несколько этапов:

  1. На первой стадии заготовки торцуют, полученные фрагменты, зафиксированные в станковом патроне, обтачивают до требуемых размеров (длины и диаметра).
  2. Далее с учетом номинального диаметра снимают фаску путем черновой обточки с припуском в 0,3 – 0,5 мм на чистовую.
  3. Следующий этап состоит в чистовой проточке.
  4. Затем отторцовывают участок под головкой.
  5. Далее протачивают канавку глубиной 2 мм для отрезания и еще одну глубиной 4 мм ниже первой на 1 мм. Данные операции повторяют до отрезания заготовки.
  6. Завершающая стадия подразумевает нанесение резьбы ручным инструментом в виде плашки либо резьбового резца с применением тисков. Первое приспособление представлено специализированным режущим инструментом из быстрорежущей стали. Его устанавливают в плашкодержатель с металлическим бруском в качестве упора. Заготовку перед началом работ смазывают машинным маслом. Нарезание резьбы осуществляют на низких оборотах станка в режиме прямого вращения. В случае применения резьбового резца его устанавливают перпендикулярно оси болта.
  7. Наконец, болт отделяют от заготовки резцом.

Изготовление холодной штамповкой

Производство болтов данным методом требует определенных параметров исходного сырья. К ним относится пластичность, равномерный состав, механические характеристики, отсутствие внешних и внутренних изъянов (неметаллических включений, пористости, рисок и плен на поверхности, газовых пузырей).


Поверхностные дефекты удаляют механически или огневым методом. Далее очищают загрязнения, представленные окалиной и жировыми отложениями. Последнюю удаляют путем травления, предполагающим погружение материала в 10 – 20% смесь серной кислоты либо концентрированную соляную. В первом случае процедура длится 15 – 110 мин, во втором – 10 – 30 мин. Далее промывают от шлама и кислоты последовательно горячей и холодной водой.

После производят известкование. В некоторых случаях создают подсмазочный слой. Далее для заготовок из низколегированных сталей осуществляют фосфатирование путем использования обычно 3% смеси фосфорнокислой цинковой соли в течение 10–15 мин.

В завершение осуществляют нанесение смазки, представленной смесью машинного масла и сульфида молибдена либо парафиновой жидкости и укринола. Вместо нее можно применять мыльную эмульсию. Конечной операцией является волочение.

Холодная штамповка предполагает превращение заготовки в изделие с запланированными геометрическими параметрами. Название техпроцесса отражает, что в данном случае не используют нагревание металла. Это позволяет сократить удлинение и сужение материала, а также повысить твердость, прочность и текучесть. К тому же при рассматриваемой штамповке заготовок материал механически упрочняется.

Данная методика отличается некоторыми достоинствами. Во-первых, с ее применением возможно создавать изделия различных размеров (до 5,2 см в сечении). Во-вторых, холодная штамповка обеспечивает высокую производительность. В-третьих, при данной технологии изготовления расходуется немного материала. В-четвертых, она обеспечивает точность конечных размеров, чистоту поверхности и прочность деталей.

Для холодной штамповки существует несколько определяющих параметров:

  • Деформация заготовки. Это основной параметр, определяющий технологическую карту.
  • Отношение высоты головки к сечению конечного изделия. Определяет сложность производства.
  • Отношение сечения к длине осаживаемого фрагмента заготовки.

Технологический процесс изготовления болта по приведенной методике включает несколько этапов.
На первой стадии создают начальную форму головки. Это осуществляют путем прокатывания проволоки через разные пресс-формы. Первая прокатка направлена на распрямление и удлинение ее. После прокатки исходный материал разделяют на заготовки с запасом для головок.
Далее формируют стержень для каждого фрагмента путем пропускания через пресс и оформляют головки также рядом прессов.

Заключительный этап состоит в нанесении фаски методом обработки валиками с большой скоростью и под высоким давлением. В завершение острильной машиной скашивают резьбовую кромку.

Последние две операции осуществляют путем пластической деформации или нарезания. Чаще всего применяют вторую технологию производства болтов с использованием интегрированных в холодновысадочные механизмы приспособлений.

Штамповку болтов классифицируют на вариант с редуцированием, без него, с выдавливанием перед редуцированием.

Наиболее часто используют вариант с одинарным редуцированием. Его применяют при производстве из легированных низко- и среднеуглеродистых сплавов. К тому же данным методом изготавливают болты с равными диаметром стержня и сечением резьбы.
Без редуцирования обходятся при изготовлении коротких изделий с маленькими головками и резьбой до них прочностью 4,8–6,8. В данном случае обычно не осуществляют дополнительную термообработку. Приведенную технологию изготовления применяют редко, так как данным образом затруднительно производить болты со стандартными головками, и это часто приводит к формированию трещин и прочих дефектов на них.

Технология с двойным редуцированием актуальна для болтов прочностью от 4,6 до 10,9 из легированных сталей и среднеуглеродистых сплавов. На начальной стадии осуществляют обжатие стержня на 30%, на второй обрабатывают фрагмент под резьбу.


Технология с выдавливанием до редуцирования подходит для изготовления высокопрочных болтов с сопротивлением около 100 кг/мм 2 без последующей термической обработки, что удешевляет производство.

Изготовление горячей штамповкой

Для данной технологии также важно качество исходного сырья. Его нарезают на отрубном комплексе и ленточных станках.

На следующем этапе индуктором путем воздействия тока высокой частоты в 40 кГц разогревают фрагменты до 1000 °С. Далее, не остужая, заготовку обрабатывают под формой ударного пресса для формирования головки. В зависимости от типа последней работы также могут включать несколько этапов. После этого снимают фаску с торца начала резьбы на фрезерном станке. Для нанесения резьбы применяют автоматизированный нарезной станок.

С целью обеспечения защиты от коррозии полученные изделия подвергают химической гальванизации и горячему цинкованию. Данные работы включают несколько стадий. Начинают с очистки путем мойки в горячей воде и последующего обезжиривания раствором ПАВ с повторной мойкой. Далее осуществляют травление в соляной кислоте для окончательной очистки поверхности благодаря окислению хлорида железа. После этого остатки кислоты нейтрализуют промывкой.

В завершение изделие погружают в цинковый раствор нагретый до 450 °С либо наносят защитный слой в электролите при цинковании и химической гальванизации соответственно. Горячую штамповку оканчивают механическим устранением изъянов и полировкой болтов.

Изготовление болтов – понятный технологический процесс

Сейчас изготовление болтов в промышленных масштабах производится по технологии холодной штамповки. Эта методика дает возможность получать высокие по качеству крепежные изделия с различными типоразмерами.

1 Болты – востребованные метизы

Под интересующими нас крепежными изделиями понимают металлические стержни, на одном конце которых делается специальная головка, а на втором – винтовая канавка. Болты применяются для создания соединений разъемного вида. С их помощью можно фиксировать отдельные элементы разнообразных конструкций и агрегатов. Болты могут иметь стыковую, клеммную, полукруглую, закладную, потайную (иными словами фасонную) либо многогранную головку. Самыми распространенными считаются метизы с шестигранным навершием.

  • емкостей под давлением (фланцевое крепление);
  • элементов гусеничных транспортных средств (башмачное соединение);
  • тяжелонагруженных конструкций (шатунные изделия);
  • любых деталей, испытывающих постоянные динамические, циклические либо статические нагрузки (ударные болты).

Шестигранные крепежные изделия производятся с разными геометрическими параметрами, они могут быть обычными, а также иметь особые отверстия или углубления в головке либо стержне. Навершия некоторых типов болтов снабжаются специальной шайбой (ее называют опорной).

Описываемые метизы изготавливаются из материалов трех разных видов. К первому относят легированные и углеродистые стали, ко второму – тепло- и коррозионностойкие сплавы, к третьему – цветные сплавы. В быту, а также на различных строительных объектах в большинстве случаев используются болты первой группы. Их производят по технологии холодной штамповки, о которой мы и поговорим достаточно подробно.

2 Заготовка для изготовления крепежа – какой должна быть?

Техпроцесс холодной штамповки болтов выдвигает ряд требований к характеристикам металла, используемого в качестве исходной заготовки. Он обязан иметь равномерный химсостав и механические показатели, быть высокопластичным. Кроме того, на используемой заготовке не должно быть внутренних и наружных изъянов. Под последними понимают:

  • пористость;
  • газовые пузыри;
  • включения неметаллических примесей;
  • риски и плены на поверхности металла.

Техпроцесс производства болтов требует тщательной зачистки всех поверхностных дефектов. Она выполняется по огневой методике либо механическим способом. Заготовки, используемые для штамповки, очищаются от имеющихся на их поверхности загрязнений (от жировых отложений, окалины). Затем исходный материал обрабатывается технологическим смазочным составом.

Небольшой нюанс. Окалина с заготовок удаляется методом травления. Он предполагает погружение металла в концентрированную соляную кислоту (на 10–30 мин) либо в 10–20-процентный раствор серной кислоты (на 15–110 мин). После травления заготовки промываются обычной водой (сначала горячей, потом холодной). Это позволяет удалить с поверхности металла остатки кислоты и травильного шлама.

Подготовленные описанным выше способом заготовки подвергаются известкованию. Иногда на них дополнительно наносят особый подсмазочный слой. После этого выполняется фосфатирование заготовок (если они сделаны из низколегированных сталей). Такая операция осуществляется на протяжении 10–15 мин. Для фосфатирования применяют раствор (обычно трехпроцентный) фосфорнокислой цинковой соли.

Следующий шаг подготовки заготовки – нанесение на нее мыльной эмульсии либо аналогичной по свойствам технологической смазки (например, машинное масло плюс сульфид молибдена или состав укринол плюс парафиновая жидкость). Теперь исходный металл практически полностью готов к использованию. Его нужно лишь подвергнуть операции волочения, чтобы получить заготовку, которая позволит изготовить крепеж по чертежам со строго определенными геометрическими размерами.

3 Холодная штамповка болтов – особенности разработки технологического процесса

Техпроцесс штамповки крепежных изделий по чертежам разрабатывается таким образом, чтобы из исходной металлической заготовки можно было сделать метиз с требуемыми геометрическими параметрами. При пластической холодной деформации исходный металл не нагревается. При этом такая технология дает возможность снизить сужение и удлинение (относительные показатели) заготовок, увеличить коэффициенты их текучести и прочности, а также твердость металла. Дополнительно при холодной штамповке отмечается наклеп будущих болтов (другими словами – их качественное механическое упрочнение).

Описываемая методика производства болтов характеризуется рядом достоинств. Они приводятся далее.

  • возможность изготовления метизов различных типоразмеров (сечение готовых изделий может достигать 5,2 см);
  • высокий уровень производительности операции;
  • малый расход металла;
  • гарантия точности всех размеров болтов;
  • высокая прочность крепежа;
  • чистота наружных поверхностей метизов.

Разрабатывая техпроцесс производства болтов по рассматриваемой методике, специалисты принимают во внимание ряд специальных параметров:

  1. Отношение сечения заготовки к протяженности ее осаживаемого участка. Под последним подразумевается отрезок между пуансоном и матрицей.
  2. Отношение высоты головки и ее сечения. Болт штамповать тем сложнее, чем больше указанные величины.
  3. Истинную и относительную деформации заготовки. Эти показатели, по сути, определяют весь техпроцесс производства крепежных изделий, так как считаются ключевыми факторами операции.

Теперь, когда мы имеем представление об основных тонкостях холодной штамповки метизов, можно подробно рассмотреть технологию этой методики.

4 Техпроцесс штампования болтов – проверенная временем операция

Производство болтов на холодновысадочных производственных агрегатах, работающих в автоматическом режиме, происходит в несколько этапов. Сначала создается промежуточная форма головки изделия. Затем навершие оформляют окончательно и параллельно формируют металлический стержень с заданными параметрами (их определяют по чертежам).

Последний шаг – выполнение фаски. Ее получают либо резанием, либо методом пластической деформации. Аналогичным образом изготавливают и саму головку болта. На данный момент фаски и навершия болтов чаще всего формируют резанием. Такую процедуру обычно выполняют на специальных приспособлениях, интегрируемых в холодновысадочные установки.

Техпроцесс штамповки болтов бывает следующих видов:

  • С редуцированием (с одно- либо двукратным);
  • Без редуцирования;
  • С редуцированием, выполняемым после предварительного выдавливания.

Самой распространенной методикой штамповки болтов считается процесс с однократным редуцированием. Оно используется для производства крепежных элементов по Госстандартам 7808, 7805, 7798, 7796 из легированных, средне- и низкоуглеродистых сплавов. Однократное редуцирование оптимально для изготовления метизов, у которых сечение (наружное) резьбы идентично диаметру стержня.

Техпроцесс без редуцирования создается тогда, когда требуется получить короткие метизы с резьбой до навершия и с уменьшенными головками. Готовые болты по такой методике имеют класс прочности 5.8, 4.8, 6.8. Как правило, штамповка без редуцирования не предполагает дополнительной термообработки выпускаемого крепежа.

В последнее время производство болтов без редуцирования осуществляется очень редко. Такая методика затрудняет процесс изготовления метизов со стандартными размерами наверший. Она нередко приводит к появлению трещин и иных дефектов на головках выпускаемых изделий.

Если требуется получить болты прочностью 4.6–10.9 из легированных сталей и среднеуглеродистых металлургических сплавов, применяется методика их производства с двойным редуцированием. На первом этапе в подобных ситуациях выполняется обжатие стержня крепежного изделия (примерно на 30 %), на втором – обрабатывается отрезок под резьбу.

Для производства высокопрочных болтов обычно разрабатывается техпроцесс, предусматривающий выдавливание и последующее редуцирование (строго однократное) исходной заготовки. Такая методика позволяет получать метизы с сопротивлением порядка 100 кг/кв.мм. При этом необходимости в специальной термической обработке готовых болтов нет. За счет этого себестоимость выпуска болтов снижается.

5 Автоматические линии для производства крепежа – основные агрегаты

Для производства болтов по различным чертежам используются специальные штамповочные линии. Они включают в себя обрезные, холодновысадочные (пресс-автоматы), резьбонакатные и другие (для сверления отверстий, обточки фасок, подрезки торцов) агрегаты. Между собой отдельные машины соединяются специальными механизмами, которые транспортируют заготовку.

Главным элементом автоматической линии можно назвать холодновысадочный агрегат. Он необходим для оформления стержня будущего болта и высадки его головки. Резьба при этом нарезается на отдельной машине (резьбонакатное устройство). Она может не входить в состав автоматической линии, если навершие крепежного изделия получает окончательную форму на холодновысадочной установке.

Пресс-автоматы располагают различными рабочими механизмами и приспособлениями:

  • выталкивателями;
  • отрезными и высадочными матрицами;
  • чистовыми и черновыми пуансонами;
  • правильными, подающими и задающими роликами;
  • отрезными ножами.

Добавим, что линии для штамповки болтов с разными геометрическими размерами постоянно совершенствуются. Их производительность постоянно увеличивается, а качество и прочность готовых крепежных изделий становится лучше.

Добавить комментарий